簡易檢索 / 詳目顯示

研究生: 陳郁欣
Chen, Yu-Hsin
論文名稱: 利用基因重組酵母菌穩定生產cholesta-5,7,24-trienol
Stable production of cholesta-5,7,24-trienol in recombinant Saccharomyces cerevisiae
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 66
中文關鍵詞: HMG-CoA reductaseCholesta-5,7,24-trienol維生素D3
外文關鍵詞: HMG-CoA reductase, Cholesta-5,7,24-trienol, Calcitriol
相關次數: 點閱:75下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   cholesta-5,7,24-trienol為動物細胞膽固醇生合成路徑眾多中間產物之一,在工業上可做為calcifediol合成之起始物質,進一步合成calcitriol。calcitriol為具活性之維生素D3,人體可經由皮膚中大量之7-dehydrocholesterol吸收陽光中紫外線B (UVB),再經由肝臟、腎臟代謝而產生具有最大活性之維生素D3 (calcitriol)。以往認為維生素D僅有助於強健骨骼、避免骨質疏鬆,但愈來愈多的研究發現維生素D與許多慢性病及免疫疾病息息相關。維生素D於臨床研究中被證實不僅能降低心臟病、糖尿病、憂鬱症、失智症、慢性疼痛、癌症、氣喘的發生,並可使人體提高免疫力以對抗疾病的發生。對於無法獲得足夠日曬或攝入足夠維生素D的族群而言,適當的補充維生素D是非常重要的。
    本實驗欲使用代謝工程方法大量生產cholesta-5,7,24-trienol;利用erg5-erg6雙突變酵母菌進行cholesta-5,7,24-trienol之生合成,但由於cholesta-5,7,24-trienol生合成途徑含一速率決定步驟之酵素- HMG-CoA reductase,因此本實驗轉殖入帶有HMG-CoA reductase催化位序列之質體以增加酵母菌HMG-CoA reductase之反應速率,期望有助於提高cholesta-5,7,24-trienol之生合成產量。
      藉由cholesta-5,7,24-trienol定量結果證明本實驗所建立之基因重組酵母菌 (ATCC NO. 74090/YIp352-tHMG) 確實可提高cholesta-5,7,24-trienol之產量,其百分比乾重可達0.86%,產量明顯高於未轉殖之酵母菌,因此適合做為cholesta-5,7,24-trienol之工業生產菌株,期望可應用於維生素D產業,以提高國產維生素D於國際市場之競爭力。

      Cholesta-5,7,24-trienol is a metabolic intermediate of cholesterol biosynthetic pathway in animal cell, which is the initial compound of calcifediol synthesis in industry, and supplying for calcitriol synthesis. Calcitriol is the vitamin D3 with the highest activity, human body can obtain calcitriol by 7-dehydrocholesterol in skin. During exposure to sunlight, 7-dehydrocholesterol in epidermal and dermal cells absorbs ultraviolet B (UVB), it was then metabolized by liver and kidney; finally, we got active calcitriol. In the past, vitamin D was considered to regulate in calcium absorption and metabolism in intestine, kidney and skeleton. It can prevent osteoporosis. In recent years, more and more studies found that vitamin D not only can decrease the incidence of heart disease, diabetes, depression, demen-tia, chronicpain, cancer and asthma, but increase the immunity against diseases. It is very important to intake amount of vitamin D for people without enough sunlight and vitamin D.
      The purpose of this research is to produce a large quantity of cholesta-5,7,24-trienol by metabolic engineering. This research utilized erg5-erg6 double-mutant yeast, which can accumulate cholesta-5,7,24-trienol and transformed a plasmid which carrying the sequence of catalytic domain of HMG-CoA reductase to improve the activity of HMG-CoA reductase who are rate-limiting step of cholesta-5,7,24-trienol biosynthesis.
    The quantitative result verifies that the production of cholesta-5,7,24-trienol has significant increase, showing that the percentage of dry weight reach 0.86%, which is higher than the non-transformed yeast. This result strongly suggested that the gene-modified yeast can be applied in domestic vitamin D industry, increasing competition in international marketing.

    中文摘要----------------------------------------------------i 英文摘要---------------------------------------------------ii 目錄------------------------------------------------------vi 圖目錄---------------------------------------------------viii 表目錄------------------------------------------------------x 第一章 緒論 1.酵母菌之固醇生合成途徑---------------------------------------1 2.雙突變酵母菌株ATCC NO. 74090-------------------------------2 3.Cholesta-5,7,24-trienol----------------------------------3 4.Calcitriol-----------------------------------------------3 5.HMG- CoA reductase---------------------------------------5 6.酵母菌插入型質體--------------------------------------------6 第二章 實驗目的----------------------------------------------8 第三章 材料與方法 1.擴增HMG- CoA reductase基因序列-----------------------------9 2.建構質體--------------------------------------------------9 3.酵母菌 (ATCC NO.74090) 轉殖------------------------------12 4.truncated HMG-CoA reductase活性測定----------------------12 5.固醇產物分析.---------------------------------------------13 6.Cholesta-5,7,24-trienol鑑定-----------------------------14 7.Cholesta-5,7,24-trienol定量-----------------------------15 第四章 結果 1.擴增truncated HMG-CoA reductase-------------------------16 2.建構質體.------------------------------------------------16 3.酵母菌. (ATCC NO.74090) 轉殖-----------------------------17 4.truncated HMG-CoA reductase活性測定----------------------17 5.固醇產物分析----------------------------------------------18 6.Cholesta-5,7,24-trienol鑑定-----------------------------18 7.Cholesta-5,7,24-trienol定量-----------------------------20 第五章 討論 1.cholesta-5,7,24-trienol鑑定-----------------------------22 2.cholesta-5,7,24-trienol產量-----------------------------22 3.提高HMG-CoA reductase表現量------------------------------23 4.提升Cholesta-5,7,24-trienol產量--------------------------24 第六章 結論------------------------------------------------27 第七章 參考文獻---------------------------------------------28

    Badziong et al. (1999) Process for using the yeast ADH II promoter system for the production of heterologous proteins in high yields. United States Patent, No. 5866371
    Bard M, Woods RA, Barton DH, Corrie JE, Widdowson DA (1977) Sterol mutants of Saccharomyces cerevisiae: chromatographic analyses. Lipids 12: 645-654
    Bard M, Woods RA, Haslam JM (1974) Porphyrine mutants of Saccharomyces cerevisiae: correlated lesions in sterol and fatty acid biosynthesis. Biochem Biophys Res Commun 56: 324-330
    Baroncelli GI (2007) Vitamin D deficiency. N Engl J Med 357: 1981; author reply 1981-1982
    Basson ME, Thorsness M, Finer-Moore J, Stroud RM, Rine J (1988) Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol Cell Biol 8: 3797-3808
    Basson ME, Thorsness M, Rine J (1986) Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A 83: 5563-5567
    Bertrand-Thiebault C, Masson C, Siest G, Batt AM, Visvikis-Siest S (2007) Effect of HMGCoA reductase inhibitors on cytochrome P450 expression in endothelial cell line. J Cardiovasc Pharmacol 49: 306-315
    Bischoff KM, Rodwell VW (1996) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Haloferax volcanii: purification, characterization, and expression in Escherichia coli. J Bacteriol 178: 19-23
    Bocking T, Barrow KD, Netting AG, Chilcott TC, Coster HG, Hofer M (2000) Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae. Eur J Biochem 267: 1607-1618
    Boll M, Lowel M, Still J, Berndt J (1975) Sterol biosynthesis in yeast. 3-Hydorxy-3-methylglutaryl-Coenzyme A reductase as a regulatory enzyme. Eur J Biochem 54: 435-444
    Bourre JM, Clement M, Gerard D, Legrand R, Chaudiere J (1990) Precursors for cholesterol synthesis (7-dehydrocholesterol, 7-dehydrodesmosterol, and desmosterol): cholesterol/7-dehydrocholesterol ratio as an index of development and aging in PNS but not in CNS. J Neurochem 54: 1196-1199
    Chen G, Fan KW, Lu FP, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N Biotechnol 27: 382-389
    Cheng B, Yuan QP, Sun XX, Li WJ (2010) Enhanced production of coenzyme Q10 by overexpressing HMG-CoA reductase and induction with arachidonic acid in Schizosaccharomyces pombe. Appl Biochem Biotechnol 160: 523-531
    Chien LJ, Lee CK (2005) Expression of bacterial hemoglobin in the yeast, Pichia pastoris, with a low O2-induced promoter. Biotechnol Lett 27: 1491-1497
    Chu J, Zhang S, Zhuang Y (2003) Fermentation process optimization of recombinant Saccharomyces cerevisiae for the production of human interferon-alpha2a. Appl Biochem Biotechnol 111: 129-138
    Compagno C, Tura A, Ranzi BM, Alberghina L, Martegani E (1993) Copy number modulation in an autoselection system for stable plasmid maintenance in Saccharomyces cerevisiae. Biotechnol Prog 9: 594-599
    Corey EJ, Matsuda SP, Bartel B (1994) Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Proc Natl Acad Sci U S A 91: 2211-2215
    Cryer DR, Eccleshall R, Marmur J (1975) Isolation of yeast DNA. Methods Cell Biol 12: 39-44
    Forsburg SL (1993) Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res 21: 2955-2956
    Galli G, Paoletti EG (1967) Quantitative separation of C-27 sterol precursors of cholesterol. Lipids 2: 84-85
    Geymonat M, Spanos A, Sedgwick SG (2007) A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene 399: 120-128
    Ghimire GP, Lee HC, Sohng JK (2009) Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl Environ Microbiol 75: 7291-7293
    Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1425
    Gietz RD, Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7: 253-263
    Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol 313: 107-120
    Gilbert HF, Stewart MD (1981) Inactivation of hydroxymethylglutaryl-CoA reductase from yeast by coenzyme A disulfide. J Biol Chem 256: 1782-1785
    Gille G, Sigler K, Hofer M (1993) Response of catalase activity and membrane fluidity of aerobically grown Schizosaccharomyces pombe and Saccharomyces cerevisiae to aeration and the presence of substrates. J Gen Microbiol 139: 1627-1634
    Hampton R, Dimster-Denk D, Rine J (1996) The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 21: 140-145
    Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2: 163-167
    Hirschman JE, Durbin KJ, Winston F (1988) Genetic evidence for promoter competition in Saccharomyces cerevisiae. Mol Cell Biol 8: 4608-4615
    Holick MF (2004) Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 79: 362-371
    Holick SA, Lezin MS, Young D, Malaikal S, Holick MF (1985) Isolation and identification of 24-dehydroprovitamin D3 and its photolysis to 24-dehydroprevitamin D3 in mammalian skin. J Biol Chem 260: 12181-12184
    Honda A, Mizokami Y, Matsuzaki Y, Ikegami T, Doy M, Miyazaki H (2007) Highly sensitive assay of HMG-CoA reductase activity by LC-ESI-MS/MS. J Lipid Res 48: 1212-1220
    Hoving EB (1995) Chromatographic methods in the analysis of cholesterol and related lipids. J Chromatogr B Biomed Appl 671: 341-362
    Hsieh HP, Da Silva NA (1998) An autoselection system in recombinant Kluyveromyces lactis enhances cloned gene stability and provides freedom in medium selection. Appl Microbiol Biotechnol 49: 147-152
    Istvan ES, Deisenhofer J (2000) The structure of the catalytic portion of human HMG-CoA reductase. Biochim Biophys Acta 1529: 9-18
    Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153: 163-168
    Johnston JJ, Goodall MJ, Yoder CA, Furcolow CA, Goldade DA, Kimball BA, Miller LA (2003) Desmosterol: a biomarker for the efficient development of 20,25-diazacholesterol as a contraceptive for pest wildlife. J Agric Food Chem 51: 140-145
    Kawaguchi A (1970) Control of ergosterol biosynthesis in yeast. Existence of lipid inhibitors. J Biochem 67: 219-227
    Kow YW, Bao G, Reeves JW, Jinks-Robertson S, Crouse GF (2007) Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands. Proc Natl Acad Sci U S A 104: 11352-11357
    Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, Becker JM (1998) Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66: 5301-5306
    Loison G, Nguyen-Juilleret M, Alouani S, Marquet M (1986) Plasmid-transformed URA3 FUR1 double-mutants S. cerevisiae: an autoselection system applicable to the production of foreign proteins. Nature Biotech. 4, 433-437
    Loison G, Vidal A, Findeli A, Roitsch C, Balloul JM, Lemoine Y (1989) High level of expression of a protective antigen of schistosomes in Saccharomyces cerevisiae. Yeast 5: 497-507
    Lukacs G, Papp T, Somogyvari F, Csernetics A, Nyilasi I, Vagvolgyi C (2009) Cloning of the Rhizomucor miehei 3-hydroxy-3-methylglutaryl- coenzyme A reductase gene and its heterologous expression in Mucor circinelloides. Antonie Van Leeuwenhoek 95: 55-64
    Moore JT, Jr., Gaylor JL (1970) Investigation of an S-adenosylmethionine: delta 24-sterol methyltransferase in ergosterol biosynthesis in yeast. Specificity of sterol substrates and inhibitors. J Biol Chem 245: 4684-4688
    Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER (1998) Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci U S A 95: 14071-14075
    Nakanishi S, Nishino T, Nagai J, Katsuki H (1987) Characterization of nystatin-resistant mutants of Saccharomyces cerevisiae and preparation of sterol intermediates using the mutants. J Biochem 101: 535-544
    Napp SJ, Da Silva NA (1993) Enhancement of cloned gene product synthesis via autoselection in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 41: 801-810
    Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54: 1876-1879
    Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82: 837-845
    Oliaro-Bosso S, Calcio Gaudino E, Mantegna S, Giraudo E, Meda C, Viola F, Cravotto G (2009) Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids 44: 907-916
    Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78: 6354-6358
    Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49: 95-116
    Parks LW, McLean-Bowen C, Bottema CK, Taylor FR, Gonzales R, Jensen BW, Ramp JR (1982) Aspects of sterol metabolism in the yeast Saccharomyces cerevisiae and in Phytophthora. Lipids 17: 187-196
    Parks LW, Rodriguez RJ, Low C (1986) An essential fungal growth factor derived from ergosterol: a new end product of sterol biosynthesis in fungi? Lipids 21: 89-91
    Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol 49: 66-71
    Proudlock JW, Wheeldon LW, Jollow DJ, Linnane AW (1968) Role of sterols in Saccharomyces cerevisiae. Biochim Biophys Acta 152: 434-437
    Quail MA, Kelly SL (1996) The extraction and analysis of sterols from yeast. Methods Mol Biol 53: 123-131
    Qureshi N, Dugan RE, Cleland WW, Porter JW (1976a) Kinetic analysis of the individual reductive steps catalyzed by beta-hydroxy-beta-methyl-
    glutaryl-coenzyme A reductase obtained from yeast. Biochemistry 15: 4191-4107
    Qureshi N, Dugan RE, Nimmannit S, Wu WH, Porter JW (1976b) Purification of beta-hydroxy-beta-methylglutaryl-coenzyme A reductase from yeast. Biochemistry 15: 4185-4190
    Radin NS (1981) Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 72: 5-7
    Rattray JB, Schibeci A, Kidby DK (1975) Lipids of yeasts. Bacteriol Rev 39: 197-231
    Ritter MC, Dempsey ME (1973) Squalene and sterol carrier protein: structural properties, lipid-binding, and function in cholesterol biosynthesis. Proc Natl Acad Sci U S A 70: 265-269
    Romanos MA, Beesley KM, Clare JJ (1991) Direct selection of stabilised yeast URA3 transformants with 5-fluorouracil. Nucleic Acids Res 19: 187
    Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423-488
    Ruohonen L, Aalto MK, Keranen S (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J Biotechnol 39: 193-203
    Saunders et al (1995) Method and composition for increasing the accumulation of squalene and specific sterols in yeast. United States Patent, No.: 5460949
    Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16: 339-346
    Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
    Sulpice JC, Ferezou J (1984) Squalene isolation by HPLC and quantitative comparison by HPLC and GLC. Lipids 19: 631-635
    Taylor UF, Kisic A, Pascal RA, Jr., Izumi A, Tsuda M, Schroepfer GJ, Jr. (1981) Sterol synthesis: a simple method for the isolation of zymosterol (5 alpha-cholesta-8, 24-dien-3 beta-ol) from yeast and spectral properties of zymosterol. J Lipid Res 22: 171-177
    Williamson IP, Rodwell VW (1981) Isolation and purification of 3-hydroxy-3-methylglutaryl-coenzyme A by ion-exchange chromatography. J Lipid Res 22: 184-187
    Woitek S, Unkles SE, Kinghorn JR, Tudzynski B (1997) 3-Hydroxy-3-methyl-glutaryl-CoA reductase gene of Gibberella fujikuroi: isolation and characterization. Curr Genet 31: 38-47
    Wright R, Basson M, D'Ari L, Rine J (1988) Increased amounts of HMG-CoA reductase induce "karmellae": a proliferation of stacked membrane pairs surrounding the yeast nucleus. J Cell Biol 107: 101-114
    Yamamoto T, Moerschell RP, Wakem LP, Komar-Panicucci S, Sherman F (1992) Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131: 811-819
    Zhang R, Li L, Liu S, Chen R, Rao P (1998) [An improved method of cholesterol determination in egg yolk by high performance liquid chromatography]. Se Pu 16: 91-94
    Zhang S, Sakuradani E, Shimizu S (2007) Identification of a sterol Delta7 reductase gene involved in desmosterol biosynthesis in Mortierella alpina 1S-4. Appl Environ Microbiol 73: 1736-1741

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE