簡易檢索 / 詳目顯示

研究生: 林柏笙
Lin, Po-Sheng
論文名稱: 球面與平面的光線三階微分對光學系統的像差分析
Aberration Analysis of Optical System by Third-order Differential of Rays through Spherical and Flat Surfaces
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 單色像差賽德像差邊界像差軸對稱系統非軸對稱系統
外文關鍵詞: monochromatic aberration, Seidel-aberration, boundary aberration, axisymmetric system, non-axisymmetric system
相關次數: 點閱:128下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   理想的光學系統,因為假設光學邊界沒有厚度且將正弦函數 以角度 簡化,其方程式稱為近軸光線追蹤方程式,該方程式的成像是完美成像。但是實際的幾何光學方程式是司乃爾方程式,其成像會產生像差,物點 發出的光線是5個變數的向量 的函數,無法在像平面聚焦於一點 。若想要有清晰的成像,便需要讓像差小。計算主要像差係數(稱為B係數)的像差理論是Buchdahl所發展的,其須要使用複雜又困難的迭代計算。本研究室曾於去年發展一種全新的賽德像差係數的計算方法,該理論使用泰勒級數展開,將像平面的光線 展開至第三階(即 ),但本研究室過去只有第二階的微分 ,必須用差分法求第三階微分。所以本論文旨在發展球面與平面邊界的第三階微分 ,使得光線主要像差B係數能有解析解。本文也探討軸對稱系統的個別邊界,對B係數的貢獻,並將分析結果與Zemax結果進行比較,證明了本文方法在完整系統與個別邊界的分析結果皆精準且正確。

    An ideal optical system assumes that the optical boundary has no thickness and the sine function is simplified to its first-order polynomials, which is called the paraxial ray tracing equation, and the image of this equation is perfect. However, the actual geometrical optics equation is formed by the Snell equation, and its image will occur aberrations. The light emitted by the object point is a function of five variables and cannot focus on a single point. If you want to create a clear image, you need to minimize the aberrations. The aberration theory for calculating the main aberration coefficients (known as the B coefficients) was developed by Buchdahl, and it requires complicated and difficult iterative calculations. Last year, our laboratory developed a new calculation method to calculate the aberration coefficients. The method expands the light variables of the image plane to the third order of Taylor series, but we only had the second-order differential equations for the boundaries then. Therefore, this paper aims to develop the third-order differential equations of the spherical and plane boundaries, so that the B coefficients of the main aberration of light can have an analytical solution. This paper also discusses the contribution of the individual boundaries of the axisymmetric system to the B coefficients and compares the analysis results with the Zemax results, which proves that the results of the method in both the complete system and individual boundaries are accurate and correct.

    第一章 緒論 1 1.1 光線系統 2 1.2 光線像差 5 1.3 文獻回顧 8 1.4 本文架構 10 第二章 平面邊界之光線對於光源變數的三階微分 12 2.1 光源光線微分 12 2.2 光線 對於 的二階微分矩陣 14 2.3 光線 對於 的三階微分矩陣 16 2.4 光線 對 的三階微分矩陣 18 2.5 本章結論 19 第三章 球面邊界之光線對於光源變數的三階微分 21 3.2 光線 對於 的二階微分矩陣 21 3.3 光線 對於 的三階微分矩陣 25 3.4 光線 對 的三階微分矩陣 31 3.5 本章結論 33 第四章 賽得初級光線像差 34 4.1 匹茲瓦透鏡分析 34 4.2初級像差 35 4.2.1 球面邊界系統的初級像差 36 4.2.2 直立平板對初級像差的影響 39 4.2.3 傾斜平面透鏡像差影響 42 4.3 本章結論 46 第五章 個別邊界對初級光線總像差的貢獻 47 5.1個別邊界在亞像平面的橫向像差 47 5.2個別邊界在亞像平面的縱向像差 50 5.3 個別邊界在系統像平面的橫向像差的貢獻 53 5.4個別邊界在系統像平面的縱向像差的貢獻 54 5.5 賽德和 56 5.6 本章結論 58 第六章 結論與未來展望 59 6.1本文結論 59 6.2未來展望 60 參考文獻 62

    [1] Seidel, Ludwig. "Zur Dioptrik. Über die Entwicklung der Glieder 3ter Ordnung welche den Weg eines ausserhalb der Ebene der Axe gelegene Lichtstrahles durch ein System brechender Medien bestimmen, vo Herrn Dr. L. Seidel." Astronomische Nachrichten, 43, pp. 289-304, (1856).
    [2] Frits, Zernike. "Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode." Physica, 1,
    (1934):689-704.
    [3] Taylor, Brook. "Methodus Incrementorum Directa et Inversa." Londini:Typis Pearsonianis prostant apud Gul. Innys ad Insignia Principis in Coemeterio Paulino, 1715.
    [4] H. A. Buchdahl. "Optical Aberration Coefficients." USA:Dover Publications, 1968.
    [5] Kepler, J. "Astronomia Nova" Pragae, 1609.
    [6] Descartes, René, "Discours de la méthode." 1637.
    [7] Newton, Isaac. "Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light." London, 1704.
    [8] Hamilton, William Rowan. "Theory of systems of rays." Transactions of the Royal Irish Academy, 15, pp. 69-174, (1828).
    [9] Hamilton, William Rowan. "Supplement to an essay on the theory of systems of rays." Transactions of the Royal Irish Academy, 16,
    pp. 1-61,(1830).
    [10] Hamilton, William Rowan. "Secod supplement to an essay on the theory of systems of rays." Transactions of the Royal Irish Academy, 16,
    pp. 93-125, (1831).
    [11] Henry Coddington "A system of optics." J. Smith, 1829.
    [12] Petzval, Joseph. "Bericht über die Ergebnisse einiger dioptrischer Untersuchungen." Pesth:Hartleben, 1843.
    [13] Karl Schwarzschild. "Untersuchungen zur geometrischen Optik." Göttingen:Dieterich'sen Univ.-Buchdruckerei, 1905.
    [14] Alexander Eugen Conrady, Rudolf Kingslake. "Applied Optics and Optical Design." Courier Corporation, 1992.
    [15] Paul L. Ruben. "Aberrations Arising from Decentrations and Tilts." Journal of the Optical Society of America, 54, pp. 45-52, (1964).
    [16] J. L. Rayces, "Exact Relation between Wave Aberration and Ray Aberration." Optica Acta, 11,pp. 85-88, (1964).
    [17] V. N. Mahajan, "Zernike annular polynomials for imaging systems with annular pupils." Journal of the Optical Society of America, 71,
    pp. 75-85, (1981).
    [18] V. N. Mahajan, "Zernike Annular Polynomials and Optical Aberrations of Systems with Annular Pupils." Applied Optics, 33,
    pp. 8125-8127, (1994).
    [19] Rudolf Kingslake; R. Barry Johnson, "Lens Design Fundamentals." USA:Academic Press, 2009.
    [20] Lin, Psang Dain. "Advanced Geometrical Optics." Singapore:Springer, 2017.
    [21] 鄭子暘。軸對稱光學系統的三階光線像差研究。成功大學機械工程學系學位論文,2018。
    [22] 周冠宇。軸對稱光學系統的四階波前像差與五階光線像差之研究。成功大學機械工程學系學位論文,2019。
    [23] Petre Teodorescu, Nicolae-Doru Stanescu, Nicolae Pandrea, "Numerical Analysis with Applications in Mechanics and Engineering." USA:John Wiley & Sons, 2013.
    [24] Matthew N.O. Sadiku, "Numerical Techniques in Electromagnetics." USA:CRC Press, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE