簡易檢索 / 詳目顯示

研究生: 周庭宇
Chou, Ting-Yu
論文名稱: 同軸電紡絲法製備聚乙烯醇/聚異丙基丙烯醯胺芯鞘纖維時電紡行為研究
Coaxial electrospinning behavior of poly vinyl alcohol/poly(N-isopropyl acrylamide) core/shell fibers
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: 芯鞘型奈米纖維同軸電紡絲聚(異丙基丙烯醯胺)
外文關鍵詞: core/shell nanofibers, coaxial electrospinning, PNIPAM
相關次數: 點閱:83下載:56
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以10 wt.% PNIPAM水溶液做為芯部溶液,而5 wt.% PVA水溶液為鞘部溶液,利用循環水浴槽與自製玻璃套管將芯部溶液溫度控制在低溫以確保其為一相狀態,而鞘部溶液則保持在室溫(~19 oC)。在芯部與鞘部溶液均為一相狀態下進行同軸電紡絲,製備PNIPAM/PVA芯鞘型奈米纖維。固定鞘部溶液流量為0.5 mL/h,芯部流量(Qc)由0.05上升至2 mL/h,探討PNIPAM水溶液流量上升對電紡所得纖維結構、形態的影響。

    利用玻片收集中段的液柱,在顯微鏡下可觀察到液柱內部存在因芯部與鞘部液體對比度不同而產生的邊界,證明液柱為芯鞘型結構。並以氦-氖雷射光源打擊電紡液柱,並沿著赤道方向掃描後方幕上收集所得距針底(z=0)不同距離處的散射圖案,發現掃描所得強度分佈圖中第一個強度最大值對應的散射向量數值(qm,1)隨z上升而往高q處移動,代表液柱直徑逐漸縮減。受限於芯鞘型液柱的複雜性,目前難以使用一關係式由qm,1快速估算液柱的內、外直徑數值。而當Qc逐漸上升時,在液柱長度一半處掃描散射圖案所得強度分佈中,qm,1往低q處移動,意味著芯鞘型液柱的直徑隨Qc上升而變大。

    最後,以穿透式電子顯微鏡觀察不同Qc下電紡所得纖維內部的結構,發現均有因電子雲密度不同而產生的邊界存在,代表所得均為芯鞘型纖維。以掃描式電子顯微鏡觀察電紡纖維形態,發現當Qc=0.05 mL/h時,大部分纖維具有barb結構。隨著Qc上升,電紡纖維外觀逐漸改善為beaded-free纖維形態,代表導入芯部溶液有助於改善纖維形態。量測所得纖維外直徑(Df)與Qc間存在關係式Df~Qc0.35。

    In this study, 10 wt.% PNIPAM and 5 wt.% PVA aqueous solutions were used as core- and shell- fluids in the co-axial electrospinning to prepare PNIPAM/PVA core/shell fibers. We used a circulator with cold water bath to cool down the temperature of PNIPAM solution inside the home-made glass jacket, to maintain the homogenous solution state. Air condition was used to control the room temperature to be ~19 oC, same as the temperature of PVA solution. At a fixed flow-rate of shell fluid (0.5 mL/h), the flow-rate of core fluid (Qc) was changed from 0.05 to 2 mL/h to reveal the effects of Qc on the electrospinning jet and the structure inside the as-spun fibers.
    Cover glasses were used to collect the liquid jet at the middle part. From OM images, the boundary of the two different aqueous solutions could be observed, it prove that the electrospinning jet is core/shell jet. He-Ne laser beam was targeted on the core/shell jet with different Qc, and the scattering patterns on the screen behind the jet were scanned along the equator direction to obtain the intensity profiles. From the results, the magnitude of the scattering vector of the first intensity maximum (qm,1) was determined. The value of qm,1 increased with the increasing z, it means that electrospinning jet diameter became thinner. At the middle of electrospinning jet, the qm,1 moved toward the low q value, it means that diameter of core/shell jet increased with the increasing Qc.
    At last, TEM was used to prove that the as-spun fiber is core/shell fibers. In the SEM images, it was found that the existence of core fluid is benefit to improve the morphology of as-spun core/shell fibers. The morphologies of core/shell fiber become beaded-free with the increasing Qc. The measured outer diameter of as-spun fiber (Df) increased with the increasing Qc.

    摘要 i Extended Abstract ii 誌謝 ix 目錄 xi 表目錄 xiii 圖目錄 xiv 符號 xviii 一、前言 1 二、簡介 2 2.1電紡絲簡介 2 2.2電紡絲模式 2 2.2.1 dripping mode 3 2.2.2 pulsating mode 3 2.2.3 cone-jet mode 3 2.2.4 multi jet mode 4 2.3 電紡絲實驗之流程及觀察 4 2.3.1 cone和jet形態 4 2.3.2液柱甩動過程 5 2.3.3 纖維形態 5 三、文獻回顧 10 3.1 聚異丙基丙烯醯胺 (Poly(N-isopropyl acrylamide), PNIPAAm) 10 3.2聚乙烯醇 (polyvinyl alcohol,PVA) 11 3.3同軸電紡絲 13 四、實驗 24 4.1 實驗藥品 24 4.2 實驗儀器 24 4.2.1 量測溶液性質儀器 24 4.2.2 電紡絲儀器 25 4.2.3 分析儀器 27 4.3溶液製備 27 4.3.1 PNIPAM水溶液製備 28 4.3.2 PVA水溶液製備 28 4.4電紡絲實驗 28 4.4.1電紡纖維製備 28 4.4.2以雷射散射方式量測電紡絲液柱直徑 29 4.4.3電紡實驗流程圖 31 五、結果與討論 32 5.1 電紡溶液性質 32 5.1.1 水溶液之黏度性質 32 5.1.2溶液導電度分析 33 5.1.2溶液折射率分析 33 5.2 電紡絲之變因討論 34 5.2.1 電紡纖維製備 34 5.2.2 共同可操作電壓區間 34 5.2.4 內管溶液流量對Hc與Lj的變化 35 5.3 電紡過程液柱行為分析 37 5.4 纖維形態分析 39 六、結論 72 七、參考文獻 73 八、附錄 79

    [1] Bae, Y. H., Okano, T. and Kim, S. W., “Insulin permeation through thermo-sensitive hydrogels”, Journal of Controlled Release, 9, 271-279 (1989).
    [2] Wong, J.M., Kuzmicky, K.Y., NingH, P.A., Woodrow, S., Hsien, J.E., Seiber, D.P.H., “Determination of volatile and semivolatile mutagens in air using solid adsorbents and supercritical fluid extraction”, Analytical Chemistry, 63 ,15, 1644-1650 (1991).
    [3] Hofl'man, A. S., “Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control”, Journal of Controlled Release, 4, 223-227 (1986).
    [4] Bae, Y. H., Okano, T. and Kim, S. W., “Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water”, Journal of Polymer Science Part B: Polymer Physics. , 28, 923-936 (1990).
    [5] Dong, L. C. and Hoffman, A. S., “Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control”, Journal of Controlled Release, 4,223-227 (1986).
    [6] Okano, T., Jacobs, Y. H. and Kim, S. W., “Thermally on-off switching polymers for drug permeation and release”, Journal of Controlled Release, 11, 255-265 (1990).
    [7] Kopecek, J., Vacik, J. and Lim, D., “Permeability of membranes containing ionogenic groups”, Journal of Polymer Science, 9, 2801-2815 (1971).
    [8] Alhaique, F., Marcheft, M., Riccier, F. M. and Santucci, E., “A polymeric film responding in diffusion properties to environmental pH stimuli: a model for a self-regulating drug delivery system”, Journal of Pharmacology and Pharmacotherapeutics, 33, 413-418 (1981).
    [9] Eisenberg, S. R. and Grodzinski, A. J., “Electrically modulated membrane permeability”, Journal of Membrane Science, 19, 173-194 (1984).
    [10] Kwon, I. C., Bae, Y. H., Okano, T. and Kim, S. W., “Drug release from electric current sensitive polymers”, Journal of Controlled Release, 17, 149-153 (199l).
    [11] Ricka, J. and Tanaka, T., “Swelling of ionic gels: quantitative performance of the Donnan theory”, Macromolecules, 17, 2916-2921 (1984).
    [12] Feil. , H., Bae, Y. H., Feijen, J. and Kim, S. W., “Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels”, Macromolecules, 26, 2496-2500 (1993).
    [13] Brazel, C.S., Peppas, N.A., “Synthesis and characterization of thermo and chemomechanically responsive poly (N-isopropylacrylamide-co-methacrylic acid) hydrogels”, Macromolecules, 28, 8016-8020 (1995).
    [14] Snowden, M.J., Thomas, D., Vincent, B., “Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution”, Analyst, 118, 1367-1369 (1993).
    [15] Chen, G., Hoffman, A.S., “Preparation and properties of thermoreversible, phase separating enzyme poly(N-isopropylacrylamide) conjugates”, Bioconjugate Chemistry 1993;4:509-514 (1993).
    [16] Bae, H., Okano, T., Kim, S.W., “A new thermo-sensitive hydrogel: Interpenetrating polymer networks from N-acryloylpyrrolidine and poly(oxyethylene)”, Macromolecular Rapid Communications, 9, 185-189 (1988).
    [17] Wu, X.S., Hoffman, AS., Yager, P., “Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels”, Journal of Polymer Science Part A: Polymer Chemistry, 10, 2121-2129 (1992).
    [18] Hoffman, AS., Stayton, P. S., Shimoboji, T., Long, C., Chilkoti, A., Ghen, G., Harris, J. M., “Control of protein–ligand recognition using a stimuli-responsive polymer”, Nature,378, 472-474 (1995).
    [19] Galaev, I. Y., “'Smart' polymers in biotechnology and medicine”, Russian Chemical Reviews, 64(5), 471-489 (1995).
    [20] Schild, H. G., Gaudiana, R. A., “Rheology of rigid–flexible liquid crystalline polymer/poly(methyl methacrylate) blends”, Journal of Applied Polymer Science, 46, 959-963 (1992).
    [21] Snowden MJ, Vincent B, Morgan JC. U.K. Patent No.GB 2262117A, 1993.
    [22] Bergbreiter, D. E., Mariagnaman, V.M.,Zhang, L., “Polymer ligands that can regulate reaction temperature in “smart” catalysts”, Advanced Materials, 7, 69-71 (1995).
    [23] Bergbreiter, D. E., Zang, L., Mariagnaman, V.M., “Smart ligands that regulate homogeneously catalyzed reactions”, Journal of the American Chemical Society, 115(20), 9295-9296 (1993).
    [24] Ogata, T., Nonaka, T., Kurihara, S., “Permeation of solutes with different molecular size and hydrophobicity through the poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membrane”, Journal of Membrane Science, 103, 159-165 (1995).
    [25] S. Y. Lin, K. S. Chen and C.L. Run, “Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water”, Polymer, 40, 2619-2624 (1999)
    [26] K. Otake, H. Inomata, M. Konno, and S. Saito, “Thermal analysis of the volume phase transition with N-isopropylacrylamide gels”, Macromolecules, 23, 283-289 (1990)
    [27] H. Inomata, S. Goto, and S. Saito, “Phase transition of N-substituted acrylamide gels”, Macromolecules, 23, 4887-4888 (1990)
    [28] H. G. Schild, “Poly(N-isopropylacrylamide):experiment, theory and application.”, Progress in Polymer Science, 17, 2, 163(1992).
    [29] J. Zhang and N. A. Peppas, “Synthesis and Characterization of pH- and Temperature-Sensitive Poly(methacrylic acid)/Poly(N-isopropylacrylamide) Interpenetrating Polymeric Networks”, Macromolecules, 33, 102-107(2000)
    [30] Y. Maeda, T. Higuchi, and I. Ikeda, “Change in Hydration State during the Coil−Globule Transition of Aqueous Solutions of Poly(N-isopropylacrylamide) as Evidenced by FTIR Spectroscopy”, Langmuir, 16, 7503-7509 (2000)
    [31] S. Y. Lin, K. S. Chen and C.L. Run, “Thermal micro ATR/FT-IR spectroscopic system for quantitative study of the molecular structure of poly(N-isopropylacrylamide) in water”, Polymer, 40, 2619-2624 (1999)
    [32] C. Boutris, E. G. Chatzi , C. Kiparissides, “Cloud Points in Aqueous Poly(N-isopropylacrylamide) Solutions”, Polymer, 38, 2567 -2570 (1997)
    [33] I. Ando, S. Fujishige, K. Kubota, “Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide).”, The Journal of Physical Chemistry, 93, 8, 3311(1989).
    [34] K.V. Durme, G.V. Assche, and B.V. Mele, “Kinetics of Demixing and Remixing in Poly(N-isopropylacrylamide)/Water Studied by Modulated Temperature DSC”, Macromolecules, 37, 9596-9605 (2004)
    [35] T. Okano, K. Sakai, Y. Sakurai, R. Yoshida, “Pulsatile drug delivery systems using hydrogels.”, Advanced Drug Delivery Reviews, 11, 1-2, 85(1993).
    [36] S. Varghese and A. K. Lele, R. A. Mashelka, “ Designing new thermoreversible gels by molecular tailoring of hydrophilic-hydrophobic interactions”, The Journal of Chemical Physics, 112, 3063 (2000)
    [37] Y. Choi,T. Yamaguchi, S. Nakao, “A Novel Separation System Using Porous Thermosensitive Membranes”, Industrial & Engineering Chemistry Research, 39, 2491-2495 (2000)
    [38] T. M.C. Maria, R.A. de Carvalho, P.J.A. Sobral,A. Moˆnica ,B.Q. Habitante, J. Solorza-Feria,” The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends”, Journal of Food Engineering, 87,191–199 (2008)
    [39] T. Inoue, M. Komatsu, K. Kawanishi, “Thermodynamic consideration of the sol-gel transition in polymer solution.” Polymer, 28, 980 (1987).
    [40] V .Lynda, U. Thomas, S.Arun, P. D. Nair, “A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering “, Journal of Materials Science: Materials in Medicine, 20, 259–269 (2009)
    [41] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, “Compound Core–Shell Polymer Nanofibers by Co-Electrospinning”, Advanced Materials 15, 1929 (2003).
    [42] D. Li, J. T. McCann, Y. Xia, “Use of Electrospinning to Directly Fabricate Hollow Nanofibers with Functionalized Inner and Outer Surfaces”, Small 1, 83 (2005).
    [43] M. Wang, J. H. Yu, D. L. Kaplan, G. C. Rutledge, “Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning”, Macromolecules , 39, 1102 (2006).
    [44] Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release.” , Biomacromolecules, 7, 1049-1057,(2006).
    [45] I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, A. M. Gañán-Calvo, “Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets”, Science, 295, 1695 (2002).
    [46] X. Q. Li, Y. Su, R. Chen, C. L. He, H. S. Wang, and X. M. Mo, “Fabrication and Properties of Core/shell Structure P(LLA-CL) Nanofibers by Coaxial Electrospinning.” Journal of Applied Polymer Science, 111, 1564-1570,(2009).
    [47] H. Luo, Y. Huang, D. Wang, J. Shi, “Coaxial-electrospinning as a new method to study confined crystallization of polymer”, Journal of Polymer Science Part B: Polymer Physics 51, 376 (2013).
    [48] 莊亞臻, “電紡聚(異丙基丙烯醯胺)水溶液”, 國立成功大學碩士論文, (2015)
    [49] 蔡承瑋, “以電紡絲法製備聚乙烯醇纖維及其微結構鑑定”, 國立成功大學碩士論文, (2011)
    [50] 陳冠傑, “電紡聚(異丙基丙烯醯胺)/聚乙烯醇混摻水溶液”, 國立成功大學碩士論文, (2016)

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE