簡易檢索 / 詳目顯示

研究生: 劉奕辰
Liu, Yi-Chen
論文名稱: 1-丁基-1-甲基吡咯烷二氰胺離子液體中電沉積鎵與銻化鎵
Electrodeposition of Gallium and Gallium Antimonide from 1-Butyl-1-Methylpyrrolidinium Dicyanamide
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 離子液體電沉積銻化鎵合金吸附電雙層結構
外文關鍵詞: Ionic liquids, Electrodeposition, Gallium, Gallium Antimony alloy, Adsorption, Double Layer Structure
相關次數: 點閱:1332下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要分為兩部份,第一部份為離子液體[BMP]^+ 〖[DCA]〗^-中探討含有0.1M GaCl3的電化學行為,以及利用定電位沉積法電鍍鎵金屬及銻化鎵合金。以玻璃碳電極探討Ga(Ⅲ) complex anions的氧化還原行為,可發現於電位-1.45V與-1.9V (vs. Ag)有二還原峰,經由chlorogallate混合方式判定,此二還原峰可能為〖[GaCl_x DCA_y]〗^- (x+y=4)及〖[GaCl_4]〗^-還原成Ga(0)的還原反應;電位0V有一寬廣的氧化峰,受到鎵金屬性質影響所導致其特殊現象。利用定電位沉積鎵金屬,以掃描式電子顯微鏡觀測形貌為球型顆粒,而隨著電位愈負球型尺寸愈小。
    在含有50mM GaCl3+25mM SbCl3 [BMP]^+ 〖[DCA]〗^-中定電位共鍍GaSb合金,以鎳金屬為基材,發現於60℃的條件下,定電位-1.1V可共鍍得GaSb合金。沉積樣品以描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、粉末式X-ray繞射儀(XRD)、化學分析電子光譜儀(XPS)進行結構特徵分析。
    第二部份主要探討離子液體與電極表面間的電雙層結構與陽離子吸附現象。在含有In(Ⅲ)的〖[BMP]〗^+ 〖[DCA]〗^-的系統中,以玻璃碳電極進行循環伏安法可發現不尋常的電化學行為,經由不同離子液體的比較(〖[EMI]〗^+ 〖[DCA]〗^-),以及不同的電化學分析方法,可確定此系統中陽離子吸附電極表面會影響其電化學行為,最後總結不同電位時陽離子與電極表面之間的關係。

    The electrochemical behaviors of GaCl3 were investigated in 1-butyl-1-methylpyrrol -idinium ionic liquids. The CV shows two reduction peaks were observed at -1.45V and -1.9V, which are assigned to the reduction of 〖[GaCl_x DCA_y]〗^- (x+y=4) and 〖[GaCl_4]〗^- to Ga(0), and a broad oxidation peak at 0 V on GC electrode. The
    morphologies of the electrodeposits are investigated by SEM show that nanoscale spherical Ga can be obtained and the sizes of gallium decreased at larger overpotential. Electrodeposition of GaSb alloy from [BMP]^+ 〖[DCA]〗^- containing 25mM SbCl3 and 50mM GaCl3 at -1.1V under 60ºC. The XRD pattern indicated GaSb deposit is amorphous.
    Ionic liquids (ILs) are widely used for electrochemical studies. However, electrochemical reactions taking place in ILs could be complicated by the interfacial IL ion layers at the electrode/IL interface. In this work, such complications are revealed via the electrochemical study of indium(III)/indium redox couple in the [BMP]^+ 〖[DCA]〗^- IL. Anomalous voltammetric behavior is observed with static cyclic voltammetry, convective rotating disk electrode voltammetry, and potential step chronoamperometry. The results indicate that the In(III) reduction process is complicated by the adsorption/desorption of the [BMP]+ cations. Meanwhile, less anomalous voltammetric behavior is observed in the 1-ethyl-3-methylimidazolium dicyanamide ([EMim]+[DCA]−) IL, in agreement with the weaker adsorption strength of the [EMim]+ cation. The impact of the cation adsorption is weakened by raising the temperature

    中文摘要 I Extended Abstract II 致謝 VI 本文目錄 VII 表目錄 IX 圖目錄 X 第1章 緒論 1 1-1 離子液體(Ionic liquid) 1 1-1-1 離子液體發展及特性[1] 1 1-1-2 離子液體應用 4 1-2 dicyanamide anion based 離子液體之特性及其發展 7 1-3 半導體材料簡介 11 1-4 鎵(Gallium, Ga)、銻(Antimony)合金性質與文獻回顧 12 1-4-1 鎵之性質與文獻回顧 12 1-4-2 銻化鎵(Ga-Sb)之性質與文獻回顧[34, 82-83] 14 1-5 研究動機與目的 15 第2章 實驗原理與方法[84] 16 2-1 電化學基本原理 16 2-2 循環伏安法(Cyclic Voltammetry) 17 2-3 旋轉電極伏安法(Rotating Disk Electrode Voltammetry) 18 2-4 定電位法(Chronoamperometry,CA) 19 2-5 電化學成核理論 20 2-6 成核動力學 21 2-6-1 二維空間的核成長(2D growth) 23 2-6-2 三維空間成長(3D growth) 25 第3章 實驗裝置與儀器 29 3-1 實驗藥品與材料 29 3-1-1 實驗藥品 29 3-1-2 實驗材料 30 3-1-3 離子液體的製備 30 3-2 實驗儀器設備 32 第4章 實驗結果與討論 36 4-1 GaCl3在BMP-DCA中電化學性質與鍍層分析 36 4-1-1 GaCl3在BMP-DCA中之電化學行為 36 4-1-2 GaCl3於BMP-DCA中電沉積及其鍍層分析 48 4-2 GaSb在BMP-DCA中電化學以及鍍層性質與結構分析 52 4-2-1 GaSb在BMP-DCA中之電化學行為 52 4-2-2 以定電位沉積GaSb及其鍍層分析 56 第5章 結論 69 第6章 離子液體電雙層結構-探討陽離子吸附現象 70 6-1 緒論 70 6-2 InCl3在BMP-DCA中電化學行為 72 6-3 總結陽離子吸附電極表面的電化學行為 82 參考文獻 84

    1. J. S. Wilkes, A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 2002, 4 (2), 73-80.
    2. I.-W. Sun, A. G. Edwards, G. Mamantav, Spectroscopic and Electrochemical Studies of Tungsten(Vl) and Tungsten(V) Chloride and Oxychloride Complexes in a Sodium Chloride Saturated Sodium Chloroaluminate Melt. J. Electrochem. Soc. 1993, 140 (10), 2733-2739.
    3. B. Grushko, A CsCI-TYPE PHASE IN ELECTRODEPOSITED AI-Mn ALLOYS. Scripta Metallurgica et Materialia 1994, 31 (12), 1711-1716,.
    4. G. R. Stafford, The Electrodeposition of AI3Ti from Chloroaluminate Electrolytes. J. Electrochem. Soc. 1994, 141, 945-953.
    5. Robin D. Rogers, Kenneth R. Seddon, Ionic Liquids—Solvents of the Future? SCIENCE 2003, 302, 792-793.
    6. M. R. Bermejo, F. de la Rosa, E. Barrado, Y. Castrillejo, Cathodic behaviour of europium (III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl–KCl. Journal of Electroanalytical Chemistry 2007, 603 (1), 81-95.
    7. N. V. Plechkova, K. R. Seddon, Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008, 37 (1), 123-50.
    8. FRANK H. HURLEY, THOMAS P. WIER, Electrodeposition of Metals from Fused Quaternary Ammonium Salts. Journal of the Electrochemical Society 1951, 98, 203-206.
    9. Ronald A. Carpio, Lowell A. King, Richard E. Lindstrom, John C. Nardi, Charles L. Hussey, Density, Electric Conductivity, and Viscosity of Several N-Alkylpyridinium Halides and Their Mixtures with Aluminum Chloride. J. EIectrochem. Soc. 1979, 120, 1644-1650.
    10. R. J. GALE, B. GILBERT, R. A. OSTERYOUNG, Raman Spectra of Molten Aluminum Chloride: 1-Butylpyridinium Chloride Systems at Ambient Temperatures. Inorganic Chemistry 1978, 17, 2728-2729.
    11. John S. Wilkes, Joseph A. Levisky, Robert A. Wilson, Charles L. Hussey, Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis. Inorganic Chemistry 1982, 21, 1263-1264.
    12. John S. Wilkes, Michael J. Zaworotko, Air and Water Stable I-Ethyl-3-methylimidazolium Based Ionic Liquids. J. CHEM. SOC., CHEM. COMMUN. 1992, 13, 965-967.
    13. Sherif Zein El Abedin, Frank Endres, Electrodeposition of Metals and Semiconductors in Air-and Water-Stable Ionic Liquids. Chemphyschem : a European journal of chemical physics and physical chemistry 2006, 7, 58-61.
    14. Martyn J. Earle, Kenneth R. Seddon, Ionic liquids. Green solvents for the future. Pure Appl. Chem. 2000, 72, 1391-1398.
    15. J. J. Xu, T. Xiao, X. Y. Tan, P. Xiang, L. H. Jiang, D. Wu, J. Li, S. L. Wang, A new asymmetric aqueous supercapacitor: Co3O4//Co3O4@polypyrrole. Journal of Alloys and Compounds 2017, 706, 351-357.
    16. M. G. Hosseini, H. Rasouli, E. Shahryari, L. Naji, Electrochemical behavior of a Nafion-membrane-based solid-state supercapacitor with a graphene oxide-multiwalled carbon nanotube-polypyrrole nanocomposite. Journal of Applied Polymer Science 2017, 134 (24).
    17. Z. F. Lin, P. L. Taberna, P. Simon, Graphene-Based Supercapacitors Using Eutectic Ionic Liquid Mixture Electrolyte. Electrochimica Acta 2016, 206, 446-451.
    18. W. C. Fu, Y. T. Hsieh, T. Y. Wu, I. W. Sun, Electrochemical Preparation of Porous Poly(3,4-ethylenedioxythiophene) Electrodes from Room Temperature Ionic Liquids for Supercapacitors. Journal of the Electrochemical Society 2016, 163 (6), G61-G68.
    19. K. Ghandi, A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry 2014, 04 (01), 44-53.
    20. Y. C. Celik, G. Pulletikurthi, F. Endres, Electrodeposition of Al, Zn, and Pt on silver-coated textile fibres from ionic liquids. Journal of Solid State Electrochemistry 2016, 20 (10), 2781-2790.
    21. S. Shrestha, E. J. Biddinger, Palladium electrodeposition in 1-butyl-1-methylpyrrolidinium dicyanamide ionic liquid. Electrochimica Acta 2015, 174, 254-263.
    22. D. Liu, H. Groult, L. Gaillon, C. Rizzi, N. Soulmi, C. M. Julien, E. Briot, D. Krulic, Tunable electrodeposition of Sn and Sn-based alloys using ionic liquids. Journal of Solid State Electrochemistry 2015, 19 (9), 2517-2532.
    23. M. Wu, N. R. Brooks, S. Schaltin, K. Binnemans, J. Fransaer, Electrodeposition of germanium from the ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide. Physical chemistry chemical physics : PCCP 2013, 15 (14), 4955-64.
    24. A. I. de Sá, S. Eugénio, S. Quaresma, C. M. Rangel, R. Vilar, Gold deposition from 1-butyl-1-methyl-pyrrolidinium dicyanamide ionic liquid at open-circuit and under potentiostatic control. Surface and Coatings Technology 2013, 232, 645-651.
    25. V. S. Saji, C. Y. Jung, C. W. Lee, Electrodeposition of Copper, Selenium, Indium, and Gallium on Molybdenum/Surface Oxides: Unary, Binary, Ternary and Quaternary Compositions. Journal of the Electrochemical Society 2015, 162 (9), D465-D479.
    26. K.-K. Li, Y.-F. Zhang, S.-T. Cao, Y. Zhang, Current efficiency of Ga electrodeposition under different anions concentrations. Rare Metals 2014, 35 (4), 349-355.
    27. A. Lahiri, N. Borisenko, A. Borodin, F. Endres, Electrodeposition of gallium in the presence of NH(4)Cl in an ionic liquid: hints for GaN formation. Chem Commun (Camb) 2014, 50 (72), 10438-40.
    28. F. Zhao, S. Franz, A. Vicenzo, M. Bestetti, F. Venturini, P. L. Cavallotti, Electrodeposition of Fe–Ga thin films from eutectic-based ionic liquid. Electrochimica Acta 2013, 114, 878-888.
    29. S. Ahmed, K. B. Reuter, Q. Huang, H. Deligianni, L. T. Romankiw, S. Jaime, P. P. Grand, Electrodeposited Gallium Alloy Thin Films Synthesized by Solid State Reactions for CIGS Solar Cell. Journal of The Electrochemical Society 2012, 159 (2), D129.
    30. G.-B. Pan, O. Mann, W. Freyland, Nanoscale Electrodeposition of Ga on Au(111) from Ionic Liquids. The Journal of Physical Chemistry C 2011, 115 (15), 7656-7659.
    31. D. O. Flamini, S. B. Saidman, J. B. Bessone, Electrodeposition of gallium onto vitreous carbon. Journal of Applied Electrochemistry 2007, 37 (4), 467-471.
    32. D. O. Flamini, S. B. Saidman, J. B. Bessone, Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process. Thin Solid Films 2007, 515 (20-21), 7880-7885.
    33. R. Al-Salman, S. J. Sedlmaier, H. Sommer, T. Brezesinski, J. Janek, Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. J. Mater. Chem. A 2016, 4 (33), 12726-12729.
    34. A. Lahiri, N. Borisenko, M. Olschewski, R. Gustus, J. Zahlbach, F. Endres, Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature. Angewandte Chemie 2015, 54 (40), 11870-4.
    35. R. Qu, Y. D. Jiang, B. J. Xu, J. J. Ding, C. Liao, G. P. Ling, Anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid. Journal of Rare Earths 2015, 33 (7), 776-782.
    36. B. J. Xu, R. Qu, G. P. Ling, Anodic behavior of Mg in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid. Electrochimica Acta 2014, 149, 300-305.
    37. A.R. Hajipour, F. Rafieeb, Basic Ionic Liquids. A Short Review. J. Iran. Chem. Soc. 2009, 6, 647-678.
    38. V. Pino, A. M. Afonso, Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review. Analytica chimica acta 2012, 714, 20-37.
    39. A. Marciniak, Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilibria 2010, 294 (1-2), 213-233.
    40. M. Zoubeik, M. Mohamedali, A. Henni, Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids. Fluid Phase Equilibria 2016, 419, 67-74.
    41. Z. K. Wu, Z. L. Huang, Y. Zhang, Y. H. Qin, J. Y. Ma, Y. B. Luo, Kinetics analysis and regeneration performance of 1-butyl-3-methylimidazolium glycinate solutions for CO2 capture. Chemical Engineering Journal 2016, 295, 64-72.
    42. X. C. Meng, J. Y. Wang, H. C. Jiang, X. L. Shi, Y. Q. Hu, 2-Ethyl-4-methylimidazolium Alaninate Ionic Liquid: Properties and Mechanism of SO2 Absorption. Energy & Fuels 2017, 31 (3), 2996-3001.
    43. D. S. Karousos, A. I. Labropoulos, A. Sapalidis, N. K. Kanellopoulos, B. Iliev, T. J. S. Schubert, G. E. Romanos, Nanoporous ceramic supported ionic liquid membranes for CO2 and SO2 removal from flue gas. Chemical Engineering Journal 2017, 313, 777-790.
    44. Z. L. Hou, T. Huang, C. Y. Cai, T. Resheed, C. Y. Yu, Y. F. Zhou, D. Y. Yan, Polymer vesicle sensor through the self-assembly of hyperbranched polymeric ionic liquids for the detection of SO2 derivatives. Chinese Journal of Polymer Science 2017, 35 (5), 602-610.
    45. D. S. Deng, Y. T. Jiang, X. B. Liu, Investigation of furoate-based ionic liquid as efficient SO2 absorbent. New Journal of Chemistry 2017, 41 (5), 2090-2097.
    46. S. Y. Che, R. N. Dao, W. D. Zhang, X. Y. Lv, H. R. Li, C. M. Wang, Designing an anion-functionalized fluorescent ionic liquid as an efficient and reversible turn-off sensor for detecting SO2. Chem. Commun. 2017, 53 (27), 3862-3865.
    47. P. Thomassen, A. T. Madsen, S. L. Mossin, A. Riisager, R. Fehrmann, NO absorption and oxidation in supported ionic liquid phase materials. Abstracts of Papers of the American Chemical Society 2014, 247.
    48. M. Nematpour, A. H. Jalili, C. Ghotbi, D. Rashtchian, Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Journal of Natural Gas Science and Engineering 2016, 30, 583-591.
    49. S. Safarkhani, A. A. M. Beigi, A. Vahid, A. Mirhoseini, H. Ghadirian, Application of Imidazolium based ionic liquid Nano-emulsions for the removal of H2S from crude oil. Journal of Nanoanalysis 2015, 2 (3), 10-16.
    50. J. B. Li, Y. H. Wang, Y. L. Sun, C. F. Ding, Y. N. Lin, W. Y. Sun, C. N. Luo, A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite film for sensitive electrochemical detection of dopamine. Rsc Advances 2017, 7 (4), 2315-2322.
    51. S. Krishnamurthy, D. H. K. Reddy, G. Sankar, Y. S. Yun, Facile room temperature deposition of gold nanoparticle-ionic liquid hybrid film on silica substrate. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2017, 170, 48-55.
    52. S. Kiani, F. Taherkhani, Size and temperature dependency on structure, heat capacity and phonon density of state for colloidal silver nanoparticle in 1-Ethyl-3-methylimidazolium Hexafluorophosphate ionic liquid. Journal of Molecular Liquids 2017, 230, 374-383.
    53. D. R. MacFarlane, S. A. Forsyth, J. Golding, G. B. Deacon, Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem. 2002, 4 (5), 444-448.
    54. D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, G. B. Deacon, Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem. Commun. 2001, (16), 1430-1431.
    55. M.-J. Deng, P.-Y. Chen, T.-I. Leong, I. W. Sun, J.-K. Chang, W.-T. Tsai, Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communications 2008, 10 (2), 213-216.
    56. M. Yoshizawa-Fujita, K. Johansson, P. Newman, D. R. MacFarlane, M. Forsyth, Novel Lewis-base ionic liquids replacing typical anions. Tetrahedron Letters 2006, 47 (16), 2755-2758.
    57. T. Carvalho, V. Augusto, A. Rocha, N. M. Lourenco, N. T. Correia, S. Barreiros, P. Vidinha, E. J. Cabrita, M. Dionisio, Ion jelly conductive properties using dicyanamide-based ionic liquids. The journal of physical chemistry. B 2014, 118 (31), 9445-59.
    58. D.-X. Zhuang, M.-J. Deng, P.-Y. Chen, I. W. Sun, Electrochemistry of Manganese in the Hydrophilic N-Butyl-N-methylpyrrolidinium Dicyanamide Room-Temperature Ionic Liquid. Journal of The Electrochemical Society 2008, 155 (9), D575.
    59. H. Y. Huang, P. Y. Chen, Voltammetric behavior of Pd(II) and Ni(II) ions and electrodeposition of PdNi bimetal in N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid. Electrochimica Acta 2011, 56 (5), 2336-2343.
    60. T. J. Simons, D. R. MacFarlane, M. Forsyth, P. C. Howlett, Zn Electrochemistry in 1-Ethyl-3-Methylimidazolium andN-Butyl-N-Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes. ChemElectroChem 2014, 1 (10), 1688-1697.
    61. M. J. Deng, P. C. Lin, J. K. Chang, J. M. Chen, K. T. Lu, Electrochemistry of Zn(II)/Zn on Mg alloy from the N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid. Electrochimica Acta 2011, 56 (17), 6071-6077.
    62. H. Y. Huang, C. J. Su, C. L. Kao, P. Y. Chen, Electrochemical study of Pt and Fe and electrodeposition of PtFe alloys from air- and water-stable room temperature ionic liquids. Journal of Electroanalytical Chemistry 2010, 650 (1), 1-9.
    63. Y. T. Hsieh, Y. C. Chen, I. W. Sun, 1-Butyl-1-Methylpyrrolidinium Dicyanamide Room Temperature Ionic Liquid for Electrodeposition of Antimony. Journal of the Electrochemical Society 2016, 163 (5), D188-D193.
    64. Y. T. Hsieh, Y. C. Chen, I. W. Sun, Electrodeposition of Stoichiometric Indium Antimonide from Room-Temperature Ionic Liquid 1-Butyl-1-Methylpyrrolidinium Dicyanamide. Chemelectrochem 2016, 3 (4), 638-643.
    65. Q. B. Zhang, C. Yang, Y. X. Hua, Y. Li, P. Dong, Electrochemical preparation of nanostructured lanthanum using lanthanum chloride as a precursor in 1-butyl-3-methylimidazolium dicyanamide ionic liquid. Physical chemistry chemical physics : PCCP 2015, 17 (6), 4701-7.
    66. M. Steichen, R. Djemour, L. Gutay, J. Guillot, S. Siebentritt, P. J. Dale, Direct Synthesis of Single-Phase p-Type SnS by Electrodeposition from a Dicyanamide Ionic Liquid at High Temperature for Thin Film Solar Cells. Journal of Physical Chemistry C 2013, 117 (9), 4383-4393.
    67. A. M. R. Elbasiony, S. Zein El Abedin, F. Endres, Electrochemical synthesis of freestanding tin nanowires from ionic liquids. Journal of Solid State Electrochemistry 2013, 18 (4), 951-957.
    68. M. J. Deng, P. C. Lin, I. W. Sun, P. Y. Chen, J. K. Chang, Electrodeposition of Ni-Cu Alloys in an Air and Water Stable Room Temperature Ionic Liquid. Electrochemistry 2009, 77 (8), 582-584.
    69. T. I. Leong, I. W. Sun, M. J. Deng, C. M. Wu, P. Y. Chen, Electrochemical study of copper in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid. Journal of the Electrochemical Society 2008, 155 (4), F55-F60.
    70. M. J. Deng, I. W. Sun, P. Y. Chen, J. K. Chang, W. T. Tsai, Electrode position behavior of nickel in the water- and air-stable 1-ethyl-3-methylimidazolium-dicyanamide room-temperature ionic liquid. Electrochimica Acta 2008, 53 (19), 5812-5818.
    71. J. K. Chang, M. T. Lee, C. W. Cheng, W. T. Tsai, M. J. Deng, Y. C. Hsieh, I. W. Sun, Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium-dicyanamide ionic liquid. Journal of Materials Chemistry 2009, 19 (22), 3732-3738.
    72. Y. T. Hsieh, I. W. Sun, Electrochemical growth of hierarchical CuSn nanobrushes from an ionic liquid. Electrochemistry Communications 2011, 13 (12), 1510-1513.
    73. Y. T. Hsieh, T. I. Leong, C. C. Huang, C. S. Yeh, I. W. Sun, Direct template-free electrochemical growth of hexagonal CuSn tubes from an ionic liquid. Chem. Commun. 2010, 46 (3), 484-486.
    74. R. R. Moskalyk, Gallium: the backbone of the electronics industry. Minerals Engineering 2003, 16 (10), 921-929.
    75. Michael K. Carpenter, Mark W. Verbrugge, Electrochemical Codeposition of Gallium and Arsenic from a Room Temperature Chlorogallate Melt. J. Electrochem. Soc. 1990, 137, 123-129.
    76. P.-Y. Chen, Electrochemistry of Gallium in the Lewis Acidic Aluminum Chloride-1-Methyl-3-ethylimidazolium Chloride Room-Temperature Molten Salt. Journal of The Electrochemical Society 1999, 146 (9), 3290.
    77. L. H. S. Gasparotto, N. Borisenko, O. Höfft, R. Al-Salman, W. Maus-Friedrichs, N. Bocchi, S. Zein El Abedin, F. Endres, In situ STM studies of Ga electrodeposition from GaCl3 in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. Electrochimica Acta 2009, 55 (1), 218-226.
    78. K. R. Seddon, G. Srinivasan, M. Swadzba-Kwasny, A. R. Wilson, Buffered chlorogallate(III) ionic liquids and electrodeposition of gallium films. Physical chemistry chemical physics : PCCP 2013, 15 (13), 4518-26.
    79. J. Zhang, M. An, Q. Chen, A. Liu, X. Jiang, S. Ji, Y. Lian, X. Wen, Electrochemical Study of the Diffusion and Nucleation of Gallium(III) in [Bmim][TfO] Ionic Liquid. Electrochimica Acta 2016, 190, 1066-1077.
    80. Z. Cao, S. Yang, M. Wang, X. Huang, H. Li, J. Yi, J. Zhong, Cu(In,Ga)S2 absorber layer prepared for thin film solar cell by electrodeposition of Cu-Ga precursor from deep eutectic solvent. Solar Energy 2016, 139, 29-35.
    81. J. C. Malaquias, D. Regesch, P. J. Dale, M. Steichen, Tuning the gallium content of metal precursors for Cu(In,Ga)Se2 thin film solar cells by electrodeposition from a deep eutectic solvent. Physical chemistry chemical physics : PCCP 2014, 16 (6), 2561-7.
    82. J. DeMuth, L. Ma, E. Fahrenkrug, S. Maldonado, Electrochemical Liquid-Liquid-Solid Deposition of Crystalline Gallium Antimonide. Electrochimica Acta 2016, 197, 353-361.
    83. M. Hakala, M. J. Puska, R. M. Nieminen, Native defects and self-diffusion in GaSb. Journal of Applied Physics 2002, 91 (8), 4988-4994.
    84. Allen J. Bard, Larry R. Faulkner, ELECTROCHEMICAL METHODS Fundamentals and Applications. JOHN WILEY & SONS, INC. 2001.
    85. C. Hardacre, R. W. Murphy, K. R. Seddon, G. Srinivasan, M. Swadzba-Kwasny, Speciation of Chlorometallate Ionic Liquids Based on Gallium(III) and Indium(III). Australian Journal of Chemistry 2010, 63 (5), 845-848.
    86. M. V. Fedorov, A. A. Kornyshev, Ionic Liquids at Electrified Interfaces. Chemical reviews 2014, 114 (5), 2978-3036.
    87. V. Ivaništšev, M. V. Fedorov, R. M. Lynden-Bell, Screening of Ion–Graphene Electrode Interactions by Ionic Liquids: The Effects of Liquid Structure. The Journal of Physical Chemistry C 2014, 118 (11), 5841-5847.
    88. C. Merlet, B. Rotenberg, P. A. Madden, M. Salanne, Computer simulations of ionic liquids at electrochemical interfaces. Physical chemistry chemical physics : PCCP 2013, 15 (38), 15781-92.
    89. R. M. Lynden-Bell, A. I. Frolov, M. V. Fedorov, Electrode screening by ionic liquids. Physical chemistry chemical physics : PCCP 2012, 14 (8), 2693-701.
    90. M. Z. Bazant, B. D. Storey, A. A. Kornyshev, Double layer in ionic liquids: overscreening versus crowding. Physical review letters 2011, 106 (4), 046102.
    91. M. V. Fedorov, R. M. Lynden-Bell, Probing the neutral graphene-ionic liquid interface: insights from molecular dynamics simulations. Physical chemistry chemical physics : PCCP 2012, 14 (8), 2552-6.
    92. R. Wen, B. Rahn, O. M. Magnussen, In Situ Video-STM Study of Adlayer Structure and Surface Dynamics at the Ionic Liquid/Au (111) Interface. Journal of Physical Chemistry C 2016, 120 (29), 15765-15771.
    93. Srdan Begic, Hua Li, Rob Atkin, Anthony F. Hollenkamp, Patrick C. Howlett, A comparative AFM study of the interfacial nanostructure in imidazolium or pyrrolidinium ionic liquid electrolytes for zinc electrochemical systems. Phys.Chem.Chem.Phys. 2016, 18, 29337--29347.
    94. Z. Liu, T. Cui, T. Lu, M. Shapouri Ghazvini, F. Endres, Anion Effects on the Solid/Ionic Liquid Interface and the Electrodeposition of Zinc. The Journal of Physical Chemistry C 2016, 120 (36), 20224-20231.
    95. Rui Wen, Bjçrn Rahn, Olaf M. Magnussen, Potential-Dependent Adlayer Structure and Dynamics at the Ionic Liquid/Au(111) Interface:A Molecular-Scale In Situ Video-STM Study. Angew.Chem. Int.Ed. 2015, 54, 6062-6066.
    96. A. Elbourne, S. McDonald, K. Voichovsky, F. Endres, G. G. Warr, R. Atkin, Nanostructure of the Ionic Liquid-Graphite Stern Layer. Acs Nano 2015, 9 (7), 7608-7620.
    97. R. Atkin, N. Borisenko, M. Druschler, F. Endres, R. Hayes, B. Huber, B. Roling, Structure and dynamics of the interfacial layer between ionic liquids and electrode materials. Journal of Molecular Liquids 2014, 192, 44-54.
    98. R. Atkin, N. Borisenko, M. Druschler, S. Z. el-Abedin, F. Endres, R. Hayes, B. Huber, B. Roling, An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. Physical chemistry chemical physics : PCCP 2011, 13 (15), 6849-57.
    99. Frank Endres, Oliver Ho¨ ff, Natalia Borisenko, Luiz Henrique Gasparotto, Alexandra Prowald, Rihab Al-Salman, Timo Carstens, Rob Atkin, Andreas Bund, Sherif Zein El Abedin, Do solvation layers of ionic liquids influence electrochemical reactions? Phys. Chem. Chem. Phys. 2010, 12.
    100. R. Atkin, S. Z. El Abedin, R. Hayes, L. H. S. Gasparotto, N. Borisenko, F. Endres, AFM and STM Studies on the Surface Interaction of BMP TFSA and (EMIm TFSA Ionic Liquids with Au(111). Journal of Physical Chemistry C 2009, 113 (30), 13266-13272.
    101. S. Baldelli, Surface structure at the ionic liquid-electrified metal interface. Accounts of Chemical Research 2008, 41 (3), 421-431.
    102. S. Rivera-Rubero, S. Baldelli, Surface spectroscopy of room-temperature ionic liquids on a platinum electrode: A sum frequency generation study. Journal of Physical Chemistry B 2004, 108 (39), 15133-15140.
    103. T. J. Simons, D. R. MacFarlane, M. Forsyth, P. C. Howlett, Zn Electrochemistry in 1-Ethyl-3-Methylimidazolium and N-Butyl-N-Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes. Chemelectrochem 2014, 1 (10), 1688-1697.
    104. M. Xu, D. G. Ivey, Z. Xie, W. Qu, Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochimica Acta 2013, 89, 756-762.
    105. T. J. Simons, P. C. Howlett, A. A. J. Torriero, D. R. MacFarlane, M. Forsyth, Electrochemical, Transport, and Spectroscopic Properties of 1-Ethyl-3-methylimidazolium Ionic Liquid Electrolytes Containing Zinc Dicyanamide. Journal of Physical Chemistry C 2013, 117 (6), 2662-2669.
    106. T. J. Simons, A. A. J. Torriero, P. C. Howlett, D. R. MacFarlane, M. Forsyth, High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration. Electrochemistry Communications 2012, 18, 119-122.
    107. A. P. Abbott, J. C. Barron, G. Frisch, S. Gurman, K. S. Ryder, A. F. Silva, Double layer effects on metal nucleation in deep eutectic solvents. Physical Chemistry Chemical Physics 2011, 13 (21), 10224-10231.
    108. M. Tułodziecki, J. M. Tarascon, P. L. Taberna, C. Guéry, Importance of the double layer structure in the electrochemical deposition of Co from soluble Co2+ - based precursors in Ionic Liquid media. Electrochimica Acta 2014, 134, 55-66.

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE