簡易檢索 / 詳目顯示

研究生: 林立軒
Lin, Li-Xuan
論文名稱: 添加石墨粉對泥岩材料強度發展之影響
Effect of adding graphite powder on strength development of mudstone material
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系碩士在職專班
Department of Civil Engineering (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 75
中文關鍵詞: 泥岩石墨粉標準夯實試驗無圍壓縮試驗DIC影像分析迴歸模擬
外文關鍵詞: Mudstone, Graphite, Standard Compaction Test, Unconfined Compressive Strength Test, Digital Image Correlation Analysis, Regression Modeling
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因氣候變遷導致極端氣候,台灣面臨了降水不均的問題,此情況在台灣西南部地區更為嚴重。本研究想藉由不同材料之添加觀察台灣西南部地區泥岩補強後之變化,因此選用台南市左鎮區之泥岩作為研究材料。泥岩地區容易發生邊坡崩壞、沖蝕及沉陷等災害,希望透過添加劑來提高泥岩土質穩定性、土壤強度。
    本研究選用曾文南化聯通管工程旁之菜寮溪地區泥岩作為試驗材料,並選用石墨粉做為添加劑,石墨粉特性為高穩定性、可耐高溫、導電性、導熱性、潤滑性及可塑性等特性,因此希望透過研究探討泥岩添加石墨粉後之土壤強度變化狀況。
    首先針對菜寮溪地區泥岩進行基本物性試驗了解其工程性質,接著使用不同含量(乾土重的5%、10%、15%、20%)的石墨粉作為泥岩的添加劑進行一系列試驗,包含標準夯實試驗、UCS無圍壓縮試驗(Unconfined Compressive Strength)、DIC影像分析(Digital Image Correlation)、迴歸模擬、電阻試驗。透過這些試驗,探討經石墨粉補強前後之泥岩在不同養置時間下的力學行為及穩定性是否發生變化。此外,藉由DIC試驗觀察試體破壞前後變形量狀況及利用迴歸模型方式預測泥岩在不同石墨粉含量下之強度變化狀況。
    本研究試驗結果顯示,添加10%的石墨粉之泥岩在養置7天時抗壓強度從413.1 9 kPA增量534.65 kPA,抗壓強度提升百分比達47.23%。隨著石墨粉含量上升,其抗壓強度增量逐漸下降,但經石墨粉補強之泥岩抗壓強度仍高於未經石墨粉補強之泥岩,使用10%石墨粉之泥岩試體會使泥岩工程性能得到最顯著提升,除了達到最佳抗壓強度,還能有效抑制膨脹與收縮性。
    再透過DIC試驗、迴歸模擬、電阻試驗等分析結果觀察試體之破壞情形、強度及電阻值變化趨勢,從而發現根據試體破壞前後之DIC影像無法完整呈現試體受力變化狀況。

    In recent years, Taiwan has faced uneven precipitation issues due to extreme weather caused by climate change, with the problem being particularly severe in the southwestern part of the island. This study aims to observe the changes in mudstone reinforcement in southwestern Taiwan through the addition of various materials. Therefore, mudstone from the Zuozhen District in Tainan City was selected as the research material. Mudstone areas are prone to slope failures, erosion, and subsidence. It is hoped that the use of additives can improve the stability and strength of the mudstone soil.
    This study used mudstone from the Tsai -Liao River area near the Tsengwen -Nanhua Link Pipe Project as the test material and selected graphite powder as the additive. Graphite powder is characterized by high stability, high temperature resistance, electrical conductivity, thermal conductivity, lubricity, and plasticity. Thus, the study aims to investigate the changes in soil strength after adding graphite powder to the mudstone.

    摘要I 致謝V 目錄VI 表目錄VIII 圖目錄IX 第一章 緒論1 1.1 研究動機1 1.2 研究目的2 1.3 論文架構3 第二章 文獻回顧5 2.1 泥岩研究5 2.1.1 泥岩介紹5 2.1.2 外在因素對於泥岩吸水性及強度之影響6 2.2 夯實試驗11 2.2.1 不同夯實法對於工程性質之影響11 2.2.2 土壤粒徑大小對夯實試驗之影響12 2.3 數位影像分析試驗15 2.3.1 數位影像分析介紹15 2.3.2 數位影像識別方法介紹15 2.3.3 試體變形前後位移量計算20 第三章 試驗材料及試驗計畫22 3.1 試驗材料22 3.1.1 菜寮溪泥岩22 3.1.2 石墨23 3.2 物性試驗25 3.2.1 比重試驗25 3.2.2 粒徑分析試驗25 3.2.3 阿太保限度試驗26 3.2.4 標準夯實試驗27 3.3 穩定性試驗28 3.3.1 無圍壓縮試驗28 3.4 試體製備29 3.4.1 無圍壓縮試驗之試體配比與製備方式29 3.5 影像分析試驗30 3.6 迴歸模擬試驗31 第四章 試驗結果與討論33 4.1 材料基本物性試驗33 4.2 標準夯實試驗35 4.2.1 改變C含量的變化與影響35 4.3 無圍壓縮試驗38 4.3.1 改變C含量的變化與影響38 4.3.2 應力-應變曲線結果分析45 4.3.3 養置天數不同之變化與影響45 4.3.4 重複性試驗47 4.4 影像分析試驗48 4.5 迴歸模擬試驗53 第五章 結論與建議54 5.1 結論54 5.2 建議55 參考文獻56 附錄 電阻試驗62

    [1]行政院, “曾文南化聯通管工程計畫,” 前瞻基礎建設計畫--水環境建設, 2018.
    [2]李德河(Der-Her Lee), 紀雲曜(Yuin-Yao Jhin), and 田坤國(Kuen-Gwo Tien), “泥岩之基本特性及泥岩邊坡之保護措施,” 地工技術, no. 48, pp. 35–47, 1994, doi: 10.30140/SG.199412.0003.
    [3]R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A. K. Bhowmick, “A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites,” Prog Polym Sci, vol. 36, no. 5, pp. 638–670, 2011, doi: https://doi.org/10.1016/j.progpolymsci.2010.11.003.
    [4]陳建勳, 鄭安, and J.-H. Chen, “石墨碳纖水泥質智能材料於不同荷載條件下電導及微觀特性研究,” 宜蘭縣, 2016. [Online]. Available: https://hdl.handle.net/11296/gt8h6b
    [5]D.-H. Lee, H.-M. Lin, and J.-H. Wu, “The basic properties of mudstone slopes in southwestern Taiwan,” J GeoEngineering, vol. 2007, pp. 81–95, Dec. 2007, doi: 10.6310/jog.2007.2(3).1.
    [6]L. Bjerrum, “PROGRESSIVE FAILURE IN SLOPES OF OVERCONSOLIDATED PLASTIC CLAY AND CLAY SHALES,” Soil Mechanics & Foundations Div, 1967.
    [7]Y. Lu, L. Wang, X. Sun, and J. Wang, “Experimental study of the influence of water and temperature on the mechanical behavior of mudstone and sandstone,” Bulletin of Engineering Geology and the Environment, vol. 76, no. 2, pp. 645–660, 2017, doi: 10.1007/s10064-016-0851-0.
    [8]S. Ghadr, C.-H. Liu, P. Mrudunayani, and C. Hung, “Effects of hydrophilic and hydrophobic nanosilica on the hydromechanical behaviors of mudstone soil,” Constr Build Mater, vol. 331, p. 127263, 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.127263.
    [9]S. Ghadr, C.-S. Chen, C. Liu, and C. Hung, “Mechanical behavior of sands reinforced with shredded face masks,” Bulletin of Engineering Geology and the Environment, vol. 81, no. 8, p. 317, 2022, doi: 10.1007/s10064-022-02810-z.
    [10]C.-H. Liu, S. Ghadr, P. Mrudunayani, and C. Hung, “Synergistic effects of colloidal nanosilica and fiber on the hydromechanical performance of mudstone soil in Taiwan,” Acta Geotech, 2023, doi: 10.1007/s11440-023-01969-3.
    [11]E. Felt, “Laboratory Methods of Compacting Granular Soils,” 1959.
    [12]L. Forssblad, “NEW METHOD FOR LABORATORY SOIL COMPACTION BY VIBRATION,” Highway Research Record, 1967.
    [13]S. Y. Wang, D. H. Chan, K. C. Lam, and S. K. A. Au, “A new laboratory apparatus for studying dynamic compaction grouting into granular soils,” Soils and Foundations, vol. 53, no. 3, pp. 462–468, 2013, doi: https://doi.org/10.1016/j.sandf.2013.04.007.
    [14]H. Ito, “Compaction properties of granular bentonites,” Appl Clay Sci, vol. 31, no. 1, pp. 47–55, 2006, doi: https://doi.org/10.1016/j.clay.2005.08.005.
    [15]王偉中何義傑,沈宏燦,張廷宇,張雅欣,曹鈞勝,吳亭瑩,陳柏甫, “應用數位影像相關法檢測軟性材料力 學行為之簡介,” 科儀新知, 2011.
    [16]S. Palanivelu et al., “Validation of digital image correlation technique for impact loading applications,” http://dx.doi.org/10.1051/dymat/2009053, Sep. 2009, doi: 10.1051/dymat/2009053.
    [17]T. C. Chu, W. F. Ranson, and M. A. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp Mech, vol. 25, no. 3, pp. 232–244, 1985, doi: 10.1007/BF02325092.
    [18]D. J. White, W. A. Take, and M. D. Bolton, “Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry,” Géotechnique, vol. 53, no. 7, pp. 619–631, 2003, doi: 10.1680/geot.2003.53.7.619.
    [19]H. T. Goldrein, S. J. P. Palmer, and J. M. Huntley, “Automated fine grid technique for measurement of large-strain deformation maps,” Opt Lasers Eng, vol. 23, no. 5, pp. 305–318, 1995, doi: https://doi.org/10.1016/0143-8166(95)00036-N.
    [20]J. J. Lee and M. Shinozuka, “Real-Time Displacement Measurement of a Flexible Bridge Using Digital Image Processing Techniques,” Exp Mech, vol. 46, no. 1, pp. 105–114, 2006, doi: 10.1007/s11340-006-6124-2.
    [21]J. T. Parker, J. DeBerardinis, and S. A. Mäkiharju, “Enhanced laboratory x-ray particle tracking velocimetry with newly developed tungsten-coated O(50 μm) tracers,” Exp Fluids, vol. 63, no. 12, p. 184, 2022, doi: 10.1007/s00348-022-03530-6.
    [22]T. C. Chu, W. F. Ranson, and M. A. Sutton, “Applications of digital-image-correlation techniques to experimental mechanics,” Exp Mech, vol. 25, no. 3, pp. 232–244, 1985, doi: 10.1007/BF02325092.
    [23]W. H. Peters and W. F. Ranson, “Digital Imaging Techniques In Experimental Stress Analysis,” Optical Engineering, vol. 21, no. 3, p. 213427, Jun. 1982, doi: 10.1117/12.7972925.
    [24]陳北亭, 黃仲偉, C.-W. Huang, and B.-T. Chen, “數位影像量測於結構實驗之應用,” 桃園縣, 2009. [Online]. Available: https://hdl.handle.net/11296/wkgqc4
    [25]Z. Xiu, S. Wang, Y. Ji, F. Wang, F. Ren, and V.-T. Nguyen, “Loading rate effect on the uniaxial compressive strength (UCS) behavior of cemented paste backfill (CPB),” Constr Build Mater, vol. 271, p. 121526, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121526.
    [26]K. Zhang, K. Zhang, K. Jin, K. Hu, and J. Xie, “Influence of intermittent opening density on mechanical behavior and fracture characteristics of 3D-printed rock,” Theoretical and Applied Fracture Mechanics, vol. 124, p. 103764, 2023, doi: https://doi.org/10.1016/j.tafmec.2023.103764.
    [27]魏士翔, 郭文田, W.-T. Kuo, and S.-S. Wei, “ANFIS應用於混凝土抗壓強度預測模式,” 高雄市, 2011. [Online]. Available: https://hdl.handle.net/11296/28y6f7
    [28]M. Zain and S. Abd, “Multiple Regression Model for Compressive Strength Prediction of High Performance Concrete,” Journal of Applied Sciences, vol. 9, Jan. 2009, doi: 10.3923/jas.2009.155.160.
    [29]魏夢麗 and 呂秀英, “決定係數(R2 )在迴歸分析中的解釋及正確使用,” 科學農業, 1999.
    [30]X. Liu, G. Cai, L. Liu, S. Liu, and A. J. Puppala, “Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository,” Int J Heat Mass Transf, vol. 141, pp. 981–994, 2019, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.015.
    [31]A. M. Rajabi, M. Sadeh, M. H. Mohammadrezaei, and B. Behnia, “A laboratory investigation of the geomechanical properties of graphite stabilized clayey sands,” Arabian Journal of Geosciences, vol. 14, no. 24, 2021, doi: 10.1007/s12517-021-09001-2.
    [32]L. Lu, Q. Ma, J. Hu, and Q. Li, “Mechanical Properties, Curing Mechanism, and Microscopic Experimental Study of Polypropylene Fiber Coordinated Fly Ash Modified Cement–Silty Soil,” Materials, vol. 14, p. 5441, Sep. 2021, doi: 10.3390/ma14185441.
    [33]L.-T. Shao, G. Liu, F. Zeng, and X. Guo, “Recognition of the Stress-Strain Curve Based on the Local Deformation Measurement of Soil Specimens in the Triaxial Test,” Geotechnical Testing Journal, vol. 39, p. 20140273, Jul. 2016, doi: 10.1520/GTJ20140273.
    [34]張宏武, 陳平護, 楊潔豪, P.-H. Cheng, C.-H. Yang, and H. Chang, “台灣西南泥岩之電阻率構造,” 桃園縣, 2001. [Online]. Available: https://hdl.handle.net/11296/vhc7jp

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE