簡易檢索 / 詳目顯示

研究生: 張瓊丹
Chang, Chung-Dan
論文名稱: 濺鍍薄膜表面型態及顯微結構之模擬解析研究
Simulation of Topography and Microstructure for Sputtered Films
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 等位函數電腦模擬
外文關鍵詞: level set method, computer simulation
相關次數: 點閱:61下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著半導體晶片上的元件積集度增加,元件尺寸縮小,濺鍍薄膜的鍍膜均勻度與顯微結構將成為影響元件可靠度與物性的關鍵因素。藉由電腦模擬薄膜製程,將可研究不同參數對薄膜結構的影響與瞭解實驗中所無法觀察到的沈積型態演化過程。本研究發展一個三維濺鍍薄膜的模擬系統,採用等位函數法(Level Set Method)進行界面演化的運算,並依據遮蔽效應計算表面沈積速度。本系統包含兩個尺度下的模擬模型:溝槽/接觸孔之鍍膜表面型態模型與成核成長的微結構模型。在表面型態模型中,探討濺鍍源角分佈、基板溫度與溝槽/接觸孔形狀對於鍍膜均勻度的影響。在微結構模型中,探討
    成核之控制變因(鍵結係數、原子團捕捉半徑及臨界核大小)對於成核型態的影響,以及成核型態對於接續成長之晶粒型態的影響。
      模擬結果顯示,在溝槽/接觸孔鍍膜表面型態方面:改變濺鍍源角分佈對於鍍膜均勻度無顯著的影響,而提升基板溫度則可改善鍍膜均勻度且相同深寬比溝槽的鍍膜均勻度較接觸孔佳,模擬結果與實驗相比較也具有相當的準確性。在成核成長方面:在不同的成核控制變因條件範圍下,可生成網絡狀、片狀與島狀三種不同的成核型態。在晶界不移動的假設下,此三種成核型態薄膜的生成晶粒型態與晶粒粒徑分佈均不同,但具有相似的表面粗糙度。成核與成長型態的模擬結果,均有文獻之實驗資料可作型態上的定性比較。

      With the increasing integration and the shrinking size of devices on chips, the uniformity and microstructure of sputtered films become critical for the reliability and physical properties of devices. With the simulation of sputter deposition, we can study how variables affect the film structures and under- stand the structural evolution which can’t be observed in experiments.
      A three-dimensional simulation system of sputter deposition has been developed in this study. The topographic evolution is modeled using level set methods, and the deposition rate is evaluated considering shadow effects. The system includes two models for different scales. One is the macro-topography model of deposition into trenches and vias; the other is the microstructure model of nucleation and growth. In the topography model, the effects of angular distribution of target flux, deposition temperature and geometry of trenches and vias on film uniformity are studied. In the microstructure model, the effects of controlled nucleation variables (including sticking coefficients, captured radii of clusters and critical nuclei size) on nucleation types are discussed as well as the influences of nucleation types upon the following grain growth.
      The simulation has shown the following results. In the aspect of trenches and vias deposition topography, angular distribution of target flux has no significant effects on uniformity, and better uniformity can be achieved with higher deposition temperature. In addition, with the same aspect ratio, trenches can obtain better film uniformity than vias. Simulated topography results have a reasonably accurate comparison with experiments. In the aspects of nucleation and growth, three different nucleation types (networks, flat pieces and islands) are observed in varied range of controlled nucleation variables. Under the assumption of immobile grain boundaries, the resulting grain shapes and grain size distributions of these three nucleation types are different; nevertheless, the resulting surface roughness is similar. The simulation cases of nucleation and growth provide a qualitatively accurate comparison with experimental data of references.

    摘要........................................................I Abstract.................................................. II 誌謝.......................................................IV 目錄.......................................................VI 表目錄.................................................. VIII 圖目錄.....................................................IX 符號說明表.................................................XI 第一章 緒論.................................................1 1-1 研究背景................................................1 1-2 文獻回顧................................................3 1-3 研究目的................................................8 第二章 理論基礎............................................10 2-1 濺鍍源之角分佈型態.....................................10 2-2 遮蔽效應與沈積速度.................................... 11 2-3 基板溫度與表面擴散速度.................................12 2-4 薄膜成核與成長機制.....................................13 2-4-1 成核理論.............................................13 2-4-1-1 原子鍵結係數.......................................14 2-4-1-2 原子團之捕捉半徑...................................15 2-4-1-3 臨界核.............................................15 2-4-2 薄膜成長.............................................17 2-5 等位函數...............................................17 2-5-1 等位函數方程式.......................................18 2-5-2 界面速度.............................................19 2-5-3 Extension Velocity...................................19 2-5-4 距離函數之重初始化...................................20 2-6 Fast Marching Method...................................21 2-7 初始等位函數之決定.....................................22 第三章 數值模型與數值計算方法..............................34 3-1 控制方程式的離散.......................................34 3-1-1 時間項的離散.........................................35 3-1-2 空間項的離散.........................................35 3-1-3 距離函數的離散.......................................37 3-2 數值穩定條件...........................................38 3-3 計算區域之邊界設定.....................................39 3-4 遮蔽效應的計算.........................................39 3-5 顯微結構之數值模型.....................................40 3-5-1 吸附成核之數值計算...................................40 3-5-2 晶粒成長之晶界界面處理...............................42 3-6 數值計算流程...........................................43 第四章 結果與討論..........................................49 4-1 溝槽/接觸孔之沈積薄膜表面型態..........................49 4-1-1 鍍膜均勻度...........................................49 4-1-2 濺鍍源型態的影響.....................................50 4-1-3 基板溫度的影響.......................................51 4-1-4 溝槽/接觸孔形狀的影響................................51 4-1-5 實驗驗證.............................................52 4-2 薄膜之顯微結構.........................................53 4-2-1 成核型態.............................................53 4-2-2 成核型態的驗證.......................................57 4-2-3 晶粒成長型態.........................................58 4-2-4 晶粒成長型態的驗證...................................60 第五章 結論................................................82 第六章 未來研究方向........................................84 參考文獻...................................................85 附錄A 等位函數方程式之推導.................................89 附錄B 距離函數方程式之推導.................................90 附錄C 成核之初始等位函數的計算.............................91 附錄D 晶粒粒徑計算.........................................92 附錄E 表面粗糙度計算.......................................93

    1 J. E. Mahan, Physical Vapor Deposition of Thin Film, New York: Wiley, 2000.
    2 M. Ohring, The materials science of thin films: deposition and structure  (2nd ed.), San Diego, CA: Academic Press, 2002.
    3 C. V. Thompson, “Structure Evolution During Processing of Polycrystalline Films”, Annu. Rev. Mater. Sci.,30, pp.159-190 (2000)
    4 R. P. Vinci, J. J. Vlassak, “Mechanical behavior of thin films”, Annu. Rev. Mater. Sci., 26, pp.431-462 (1996)
    5 C. C. Hwang, J. G. Chang and S. P. Ju, “Molecular Dynamics Simulation of Sputter-deposited Thin film: A Review”, J. CSME, 24(4),pp.309-336(2003)
    6 R. T. Hong, M. J. Huang and J. Y. Yang, “Molecular dynamics study of copper trench filling in damascene process”, Mater. Sci. Semicond. Process., 8, pp.587-601 (2005)
    7 S. W. Levine and P. Clancy, “A simple model for the growth of polycrystalline Si using the kinetic Monte Carlo Simulation”, Modelling Simul. Mater. Sci. Eng., 8, pp.751-762 (2000)
    8 L. Wang and P. Clancy, “Kinetic Monte Carlo simulation of the growth of polycrystalline Cu films”, Surf. Sci., 473, pp.25-38 (2001)
    9 H. Huang and G. H. Glimer, “Atomistic simulation of texture competition during thin film deposition”, J. Comput. Aided Mater. Des.,7, pp.203-216 (2001)
    10 H. Huang and L. G. Zhou, “Atomistic simulator of polycrystalline thin film deposition in three dimensions”, J. Comput. Aided Mater. Des., 11, pp.59-74 (2004)
    11 P. Zhang, X. Zheng, S. Wu and D. He, “A computer simulation of nucleation and growth of thin films”, Comput. Mater. Sci., 30, pp.331-336 (2004)
    12 T. S. Cale, G. B. Raupp and T. H. Gandy, “Free molecular transport and deposition in long rectangular trenches”, J. Appl. Phys. 68(7), p.3645-3652 (1990)
    13 T. S. Cale, B. R. Rogers, T. P. Merchant and L. J. Borucki, “Deposition and etch processes: continuum film evolution in microelectronics”, Comput. Mater. Sci., 12, pp.333-353 (1998)
    14 D. S. Bang, J.P. McVittie, K. C. Saraswat, Z. Krivokapic, J.A. Iacoponi, and J. Gray, “Three Dimensional PVD Virtual Reactor for VLSI Metalization”, IEDM Tech. Digest, pp.97-100 (1995)
    15 Paritosh, D. J. Srolovitz, C. C. Battaile, X. Li and J. E. Butler, “Simulation of faceted film growth in two-dimensions: microstructure, morphology and texture”, Acta Mater., 47, pp.2269-2281 (1999)
    16 J. Zhang and J. Adams, “FACET : a novel model of simulation and visualization of polycrystalline thin film growth”, Modelling Simul. Mater. Sci. Eng., 10, pp.381-401 (2002)
    17 P. L. O’Sullivan, F. H. Baumann and G. H. Glimer, “Simulation of physical vapor deposition into trenches and vias: Validation and comparison with experiment”, J. Appl. Phys., 88(7), pp.4061-4068 (2000)
    18 P. Smereka, X. Li, G. Russo and D. J. Srolovitz, “Simulation of faceted film growth in three dimensions: microstructure, morphology and texture”, Acta Mater., 53, pp.1191-1204 (2005)
    19 M. O. Bloomfield, Y. H. Im, T. S. Cale, “Microstructure development and evolution”, SISPAD 2003 International Conference, pp.19-22
    20 M. O. Bloomfield and T. S. Cale, “Formation and evolution of grain structures in thin films”, Microelectron. Eng., 76, pp.195-204 (2004)
    21 P. L. O’Sullivan, F. H. Baumann and G. H. Gilmer, “Continuum model of thin film deposition incorporating finite atomic length scales”, J. Appl. Phys., 92(7), pp.1-8 (2002)
    22 D. Moldovan, D. Wolf and S. R. Phillpot, “Linking atomistic and mesoscale simulations of nanocrystalline materials: quantitative validation for the case of grain growth”, Philos. Mag., 83(31-34), pp.3643-3659 (2003)
    23 C. Ratsch and J. A. Venables, “Nucleation theory and the early stages of thin film growth”, J. Vac. Sci. Technol. A, 21(5), pp.S96-S109 (2003)
    24 Y. Yamamura, T. Takiguchi and M. Ishida, “Energy and Angular- distributions of Sputtered Atoms at Normal Incidence”, Radiat. Eff. Defects Solids, 118(3), pp.237-261 (1991)
    25 S. D. Ekpe, L.W. Bezuidenhout and S. K. Dew, “Deposition rate model of magnetron sputtered particles”, Thin Solid Films, 474, pp.330-336 (2005)
    26 P. L. O’Sullivan, F. H. Baumann and G. H. Gilmer, “Simulation of physical vapor deposition into trenches and vias: Validation and comparison with experiment”, J. Appl. Phys., 88(7), pp.4061-4068(2000)
    27 B. Lewis and J. C. Anderson, Nucleation and Growth of Thin Films, New York: Academic Press, 1978.
    28 曲喜新, 过璧君, 薄膜物理, 电子工业出版社, 1994.
    29 Stanley Osher and Ronald Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, New York: Springer-Verlag., 2003.
    30 Sethian, James A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd ed.). New York: Cambridge University Press., 1999.
    31 R. Malladi, J.A. Sethian and B.C. Vemuri, “Shape Modeling with Front Propagation: A Level Set Approach”, IEEE Trans. On Pattern Analysis and Machine Intelligence, 17(2), pp.158-175(1995)
    32 J.A. Sethian. “A Fast Marching Level Set Method for Monotonically Advancing Fronts”, Proc. Nat. Acad. Sci., vol. 93:4, pp.1591-1595, (1996)
    33 M. Stepanova and S. K. Dew, “Estimates of differential sputtering yields for deposition applications”, J. Vac. Sci. Technol. A, 19(6), pp.2805-2816 (2001)
    34 S. Osher and J.A. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations”, J. Comput. Phys., 79, pp.12-49(1988)
    35 T. Karabacak, T.M. Lu, “Enhanced step coverage by oblique angle physics vapor deposition”, J. Appl. Phys.,97, pp.124504 (2005)
    36 M. Stepanova and S. K. Dew, “Estimates of differential sputtering yields for deposition applications”, J. Vac. Sci. Technol. A, 19(6), pp.2805-2816 (2001)
    37 C. L. Liu, J. M. Cohen, J. B. Adams and A. F. Voter, “EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt”, Surf. Sci., 253, pp.334-344 (1991)
    38 G. Fuchs, P. Melinon, F. Santos Aires, M. Treilleux, et al., “Cluster-beam deposition of tin metallic antimony films: Cluster-size and deposition-rate effects”, Phys. Rev. B, 44(8), pp.3926-3933(1991)
    39 P. Andreazza, C. Andreazza-Vignolle, J. P. Rozenbaum, et al., “Nucleation and initial growth of platinum islands by plasma sputter”, Surf. Coat. Technol., 151, pp.122-127(2002)
    40 M. Kalff, M. Breeman, M. Morgenstern, et al., “Effect of energetic particles on island formation in sputter deposition of Pt on Pt(111)”, Appl. Phys. Lett., 70 (2), pp.182-184(1997)
    41 D. Litvinov, T. A. Roscamp and T. Klemmer, “Co/Pd Multilayer Based Recording Layers For Perpendicular Media”, Mat. Res. Soc. Symp. Proc., 674, pp.T.3.9.1-T.3.9.6 (2001)

    下載圖示 校內:2007-07-21公開
    校外:2007-07-21公開
    QR CODE