簡易檢索 / 詳目顯示

研究生: 羅祐伸
Lo, Yo-Shen
論文名稱: DNA 同源性修復機制及拓樸異構酶影響 B 型肝炎病毒複製之研究
Study of the potential roles of DNA homologous recombination and topoisomerases in HBV replication
指導教授: 黃溫雅
Huang, Wenya
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 62
中文關鍵詞: B型肝炎拓樸異構酶DNA修復
外文關鍵詞: Hepatitis B virus, topoisomerase, DNA repair
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙型肝炎病毒 (HBV) 是造成急性和慢性肝炎、肝硬化以及肝細胞癌 (HCC) 的主要病原體。然而,目前臨床上主要用在 HBV 的藥物並不能有效地清除 HBV 的感染。在先前的研究中認為,HBV 病毒基因的複製很可能跟拓樸異構酶 (TOPs) 以及細胞內 DNA 修復途徑,例如 DNA 同源性重組修復路徑 (HR) 或是核苷酸切除修復路徑 (NER) 有關。然而,HBV 病毒基因複製的分子機制目前仍所知甚少。在本實驗室先前的研究結果中,我們使用了幾種 DNA 修復途徑的抑制劑進行篩選,發現了 Chk1 以及拓樸異構酶 (TOPs) 的抑制劑,能夠有效減少抑制 HBV 的複製。Chk1 能藉由磷酸化 RAD51 蛋白,以調控 DNA 同源性重組修復路徑 (HR) 。因此在本研究中,我們想去探討同源性重組修復路徑以及拓樸異構酶是否會影響 HBV 病毒基因複製的過程。我們首先生產了包含有能抑制 rad51、top1 或 top2α 基因表達的短髮夾型 RNA (shRNA) 的重組慢病毒 (Recombinant Lentivirus)。再利用慢病毒 (Lentivirus) 感染的方式,建立了能穩定且低度表現 rad51、top1 或 top2α 基因的 HepAD38 細胞株。HepAD38 是一株在沒有加入四環黴素 (Tetracyclin) 的時候,能穩定產生 HBV 病毒顆粒的細胞株。用嘌呤黴素 (Puromycin) 篩選出成功感染的細胞後,我們再以反轉錄聚合酶連鎖反應 (RT-PCR) 確認目標基因的表現量是否減少。根據實驗結果,我們分別挑出了 shRAD51-353568、shTOP1-3990 以及 shTOP2α-49279 這幾株特定基因穩定低度表現的 HepAD38 細胞。我們接下來便在這些挑出的細胞株內偵測多項 HBV 指標,以分析 HBV 複製的情形。我們利用即時定量偵測反轉錄聚合酶連鎖反應 (qRT-PCR) 去檢測 HBV 前基因型 RNA (pgRNA) 的含量是否有改變。根據其實驗結果,我們發現在 top1 或 top2α 基因穩定低度表現的 HepAD38 細胞中,HBV pgRNA 的含量有明顯的減少。而在血清學的 HBV 指標方面,西方墨點法 (Western Blot) 的結果顯示,雖然 HBV 的表面抗原 (LHBs) 的表現量在 top1 或 top2α 基因穩定低度表現的 HepAD38 細胞中有明顯的減少,但是 HBV 的核抗原 (HBcAg) 以及代表 HBV 複製活躍度的 e 抗原 (HBeAg) 卻只有在 top2α 基因穩定低度表現的 HepAD38 細胞中有明顯的減少。同時在即時定量偵測聚合酶連鎖反應 (qPCR) 的結果中,我們發現 HBV 總 DNA 含量 (HBV total DNA) 在只有在 top2α 基因穩定低度表現的 HepAD38 細胞中有明顯的減少。綜合以上結果,我們發現當細胞內 top2α 基因表現量降低時,能夠有效減少 HBV 的複製,此外,當 top1 基因表現量降低時,也會稍微影響 HBV 複製的情形。而當 DNA 同源性重組修復路徑 (HR) 抑制後則沒有減少 HBV 複製。因此,本研究證明了 top2α 基因在 HBV 病毒基因複製可能扮演著一個重要的角色,同時在未來 HBV 治療上,top2α 基因也可做為一個治療的目標。此外,拓樸異構酶對於 DNA 拓樸學的調控上也是佔有一席之地,因此我們推測 TOP2 可能會結合在 HBV 的 DNA 上且在 HBV 複製的過程中是需要的。另一方面,我們也發現細胞中的 HR 機制也包含在 HBV 複製的過程中,而根據實驗結果,我們推測細胞中 HR 途徑可能本身對於 HBV 複製就有抑制的功能。在未來的研究中, top2α 基因調控 HBV 基因複製的機制以及 HR 途徑對於 HBV 複製的影響仍可再深入探討。

    Hepatitis B virus (HBV) is a major pathogen for acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). However, the current therapeutic agents are ineffective to eliminate HBV. Previous studies suggested that HBV replication may correlate to topoisomerases and cellular DNA repair pathways, such as homologous recombination (HR) or nucleotide excision repair (NER) pathway, but the mechanism remains unclear. In our preliminary data, we screened some DNA repair inhibitors and found the chk1 inhibitor targeting RAD51, a HR protein, and topoisomerase inhibitors significantly suppressed HBV replication. In this study, we aimed to investigate the potential roles of DNA HR pathway and topoisomerases in HBV replication. The recombinant lentiviruses carrying the shRNAs of rad51, top1, and top2α were first produced to infect HepAD38 cells, which stably express HBV virion under the control of tet-off system. The target gene expressions were then checked by RT-PCR to select the HepAD38 cells with stable knockdown of RAD51, topoisomerase I (TOP1) and topoisomerase IIα (TOP2α). According to the results, the HepAD38 cells introduced with shRAD51-353568, shTOP1-3990, and shTOP2α-49279 showed the most significant and stablest knockdown efficiencies than the others. We next detected multiple HBV markers to measure the HBV replication efficiency in these clones. The HBV pre-genomic RNA (pgRNA) levels were measured by real-time RT-PCR (qRT-PCR) in these HepAD38 cells with target gene stable knockdown. We found that the HBV pgRNA levels were decreased significantly in the HepAD38 cells with gene silencing of top1 and top2α, instead of the knockdown of rad51. For serological markers, the results of western blot revealed that the expressions of LHBs were decreased significantly in the cells with silencing of top1 and top2α. However, only the top2α knockdown stable clones showed decreased HBcAg and HBeAg expressions, as well as the HBV total DNA levels in the results of real-time PCR (qPCR). Taken together, these results demonstrated that the HBV replication was significantly decreased in the cells with top2α knockdown and minor suppressed by top1 knockdown. However, the deficiency of HR pathway did not appear to suppress the HBV replication process. In conclusion, this study indicated that TOP2α may play an important role in HBV replication and serve as a potential therapeutic target. Topoisomerases are important for regulating DNA topology. We supposed that TOP2α may be associated with viral DNA and required for HBV replication. In contrast, we also indicated that HR pathway is involved in HBV replication, although the knockdown of HR pathway facilitated HBV production. We supposed that the cellular HR pathway may be a suppressive pathway for HBV replication. Therefore, the mechanisms of TOP2α or HR pathway mediated HBV replication are needed to be further investigated in the future.

    中文摘要 I Abstract III Acknowledgment V Table of Contents VI List of Tables IX List of Figures X List of Appendixes XI I. Introduction 1 1.1 Hepatitis B virus 1 1.1.1 Epidemiology of HBV 2 1.1.2 Pathogenesis of HBV 3 1.1.3 Definitions of CHB infection 4 1.1.4 Serological markers of HBV 4 1.1.5 HBV inhibitors and therapies 5 1.1.6 HBV lifecycle 7 1.1.7 HBV replication 8 1.2 Cellular DNA repair pathway 9 1.2.1 DNA homologous recombination (HR) 9 1.2.2 DNA topoisomerase 10 1.3 Preliminary data in the lab 11 II. Specific Aims 12 Aim 1 : To construct HepAD38 cells with rad51, top1, or top2α stable knockdown. 12 Aim 2 : To detect multiple HBV markers in HepAD38 cells with knockdown of rad51, top1, or top2α to investigate HBV replication efficiency. 13 III. Materials and Methods 14 3.1 Cell culture 14 3.2 Short-hairpin RNA (shRNA) plasmids extraction 14 3.2.1 Restriction enzyme (RE) check 15 3.3 Plasmid transfection 16 3.4 Lentivirus production 16 3.5 Lentivirus infection 17 3.6 Total RNA extraction 17 3.7 Reverse transcription (RT) 18 3.8 Polymerase chain reaction (PCR) 18 3.9 HBV pgRNA real-time RT-PCR (qRT-PCR) 19 3.10 Western blot 19 3.11 Total DNA extraction 20 IV. Results 22 4.1 Construction of the cell models with stable knockdown of rad51, top1, or top2α genes in HepAD38 cells. 22 4.2 HBV pgRNA levels were significantly decreased in the HepAD38 cells with top1 or top2α knockdown. 23 4.3 The HepAD38 cells with top2α knockdown showed significantly decreased HBV antigen levels. 24 4.4 HBV total DNA level was significantly decreased in the HepAD38 cells with top2α knockdown. 25 V. Discussion 26 VI. References 30

    Ahmed, M., F. Wang, A. Levin, C. Le, Y. Eltayebi, M. Houghton, L. Tyrrell and K. Barakat (2015). "Targeting the Achilles heel of the hepatitis B virus: a review of current treatments against covalently closed circular DNA." Drug Discov Today 20(5): 548-561.
    Allweiss, L. and M. Dandri (2017). "The Role of cccDNA in HBV Maintenance." Viruses 9(6).
    Boxall, E. H. (1977). "Vertical transmission of hepatitis-B surface antigen." Biomedicine 26(1): 12-15.
    Bredel, M., I. F. Pollack, J. M. Freund, J. Rusnak and J. S. Lazo (1999). "Protein kinase C inhibition by UCN-01 induces apoptosis in human glioma cells in a time-dependent fashion." J Neurooncol 41(1): 9-20.
    Bromberg, K. D., R. Velez-Cruz, A. B. Burgin and N. Osheroff (2004). "DNA ligation catalyzed by human topoisomerase II alpha." Biochemistry 43(42): 13416-13423.
    Chen, C. J., H. I. Yang, J. Su, C. L. Jen, S. L. You, S. N. Lu, G. T. Huang and U. H. Iloeje (2006). "Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level." Jama 295(1): 65-73.
    Chisari, F. V. and C. Ferrari (1995). "Hepatitis B virus immunopathogenesis." Annu Rev Immunol 13: 29-60.
    Christiansen, K. and O. Westergaard (1994). "Characterization of intra- and intermolecular DNA ligation mediated by eukaryotic topoisomerase I. Role of bipartite DNA interaction in the ligation process." J Biol Chem 269(1): 721-729.
    Cui, X., R. McAllister, R. Boregowda, J. A. Sohn, F. Cortes Ledesma, K. W. Caldecott, C. Seeger and J. Hu (2015). "Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?" PLoS One 10(6): e0128401.
    Deny, P. and F. Zoulim (2010). "Hepatitis B virus: from diagnosis to treatment." Pathol Biol (Paris) 58(4): 245-253.
    Dietlein, F., L. Thelen and H. C. Reinhardt (2014). "Cancer-specific defects in DNA repair pathways as targets for personalized therapeutic approaches." Trends Genet 30(8): 326-339.
    Durantel, D. and F. Zoulim (2016). "New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus." J Hepatol 64(1 Suppl): S117-s131.
    Fourel, G., C. Trepo, L. Bougueleret, B. Henglein, A. Ponzetto, P. Tiollais and M. A. Buendia (1990). "Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours." Nature 347(6290): 294-298.
    Gerber, M. A., S. Hadziyannis, C. Vissoulis, F. Schaffner, F. Paronetto and H. Popper (1974). "Electron microscopy and immunoelectronmicroscopy of cytoplasmic hepatitis B antigen in hepatocytes." Am J Pathol 75(3): 489-502.
    Gerber, M. A., S. Hadziyannis, C. Vissoulis, F. Schaffner, F. Paronetto and H. Popper (1974). "Hepatitis B antigen: nature and distribution of cytoplasmic antigen in hepatocytes of carriers." Proc Soc Exp Biol Med 145(3): 863-867.
    Gilbert, N. and J. Allan (2014). "Supercoiling in DNA and chromatin." Curr Opin Genet Dev 25: 15-21.
    Gomez-Moreno, A. and U. Garaigorta (2017). "Hepatitis B Virus and DNA Damage Response: Interactions and Consequences for the Infection." Viruses 9(10).
    Guirgis, B. S., R. O. Abbas and H. M. Azzazy (2010). "Hepatitis B virus genotyping: current methods and clinical implications." Int J Infect Dis 14(11): e941-953.
    Guo, H. and A. Cuconati (2017). "Hepatitis B Virus: Methods and Protocols." Methods in Molecular Biology.
    Heffernan, T. P., D. A. Simpson, A. R. Frank, A. N. Heinloth, R. S. Paules, M. Cordeiro-Stone and W. K. Kaufmann (2002). "An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage." Mol Cell Biol 22(24): 8552-8561.
    Hong, X., E. S. Kim and H. Guo (2017). "Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B." Hepatology 66(6): 2066-2077.
    Hsieh, Y. H., Y. Y. Chang, I. J. Su, C. J. Yen, Y. R. Liu, R. J. Liu, W. C. Hsieh, H. W. Tsai, L. H. Wang and W. Huang (2015). "Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis." J Pathol 236(3): 337-347.
    Jalal, S., J. N. Earley and J. J. Turchi (2011). "DNA repair: from genome maintenance to biomarker and therapeutic target." Clin Cancer Res 17(22): 6973-6984.
    Jefferies, M., B. Rauff, H. Rashid, T. Lam and S. Rafiq (2018). "Update on global epidemiology of viral hepatitis and preventive strategies." World J Clin Cases 6(13): 589-599.
    Jeng, W. J., Y. C. Chen, R. N. Chien, I. S. Sheen and Y. F. Liaw (2018). "Incidence and predictors of hepatitis B surface antigen seroclearance after cessation of nucleos(t)ide analogue therapy in hepatitis B e antigen-negative chronic hepatitis B." Hepatology 68(2): 425-434.
    Jiang, H. and L. Y. Yang (1999). "Cell cycle checkpoint abrogator UCN-01 inhibits DNA repair: association with attenuation of the interaction of XPA and ERCC1 nucleotide excision repair proteins." Cancer Res 59(18): 4529-4534.
    Kawakami, K., H. Futami, J. Takahara and K. Yamaguchi (1996). "UCN-01, 7-hydroxyl-staurosporine, inhibits kinase activity of cyclin-dependent kinases and reduces the phosphorylation of the retinoblastoma susceptibility gene product in A549 human lung cancer cell line." Biochem Biophys Res Commun 219(3): 778-783.
    Khalil, H., H. Tummala and N. Zhelev (2012). "ATM in focus: A damage sensor and cancer target." Journal of BioDiscovery.
    Kitamura, K., L. Que, M. Shimadu, M. Koura, Y. Ishihara, K. Wakae, T. Nakamura, K. Watashi, T. Wakita and M. Muramatsu (2018). "Flap endonuclease 1 is involved in cccDNA formation in the hepatitis B virus." PLoS Pathog 14(6): e1007124.
    Kline, C. L. and W. S. El-Deiry (2013). "Personalizing colon cancer therapeutics: targeting old and new mechanisms of action." Pharmaceuticals (Basel) 6(8): 988-1038.
    Kondapi, A. K., N. Satyanarayana and A. D. Saikrishna (2006). "A study of the topoisomerase II activity in HIV-1 replication using the ferrocene derivatives as probes." Arch Biochem Biophys 450(2): 123-132.
    Koniger, C., I. Wingert, M. Marsmann, C. Rosler, J. Beck and M. Nassal (2014). "Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses." Proc Natl Acad Sci U S A 111(40): E4244-4253.
    Kuhl, N. M. and L. Rensing (2000). "Heat shock effects on cell cycle progression." Cell Mol Life Sci 57(3): 450-463.
    Ladner, S. K., M. J. Otto, C. S. Barker, K. Zaifert, G. H. Wang, J. T. Guo, C. Seeger and R. W. King (1997). "Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication." Antimicrob Agents Chemother 41(8): 1715-1720.
    Lavanchy, D. (2004). "Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures." J Viral Hepat 11(2): 97-107.
    Levrero, M., T. Pollicino, J. Petersen, L. Belloni, G. Raimondo and M. Dandri (2009). "Control of cccDNA function in hepatitis B virus infection." J Hepatol 51(3): 581-592.
    Lodish H, B. A., Zipursky SL, et al. (2000). "The Role of Topoisomerases in DNA Replication." Molecular Cell Biology 4: Section 12.13.
    Long, Q., R. Yan, J. Hu, D. Cai, B. Mitra, E. S. Kim, A. Marchetti, H. Zhang, S. Wang, Y. Liu, A. Huang and H. Guo (2017). "The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation." PLoS Pathog 13(12): e1006784.
    Lucifora, J., Y. Xia, F. Reisinger, K. Zhang, D. Stadler, X. Cheng, M. F. Sprinzl, H. Koppensteiner, Z. Makowska, T. Volz, C. Remouchamps, W. M. Chou, W. E. Thasler, N. Huser, D. Durantel, T. J. Liang, C. Munk, M. H. Heim, J. L. Browning, E. Dejardin, M. Dandri, M. Schindler, M. Heikenwalder and U. Protzer (2014). "Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA." Science 343(6176): 1221-1228.
    M. Mobaraki, A. F., M. Zare, P. Dolati, M. Ataei and H. R. Dehghan Manshadi (2017). "Molecular Mechanisms of Cardiotoxicity: A Review on Major Side-effect of Doxorubicin." Indian Journal of Pharmaceutical Sciences 79(3): 335-344.
    MacLachlan, J. H. and B. C. Cowie (2015). "Hepatitis B virus epidemiology." Cold Spring Harb Perspect Med 5(5): a021410.
    McMahon, B. J., W. L. Alward, D. B. Hall, W. L. Heyward, T. R. Bender, D. P. Francis and J. E. Maynard (1985). "Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state." J Infect Dis 151(4): 599-603.
    Micco, L., D. Peppa, E. Loggi, A. Schurich, L. Jefferson, C. Cursaro, A. M. Panno, M. Bernardi, C. Brander, F. Bihl, P. Andreone and M. K. Maini (2013). "Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B." J Hepatol 58(2): 225-233.
    Minor, M. M. and B. L. Slagle (2014). "Hepatitis B virus HBx protein interactions with the ubiquitin proteasome system." Viruses 6(11): 4683-4702.
    Morikawa, K., G. Suda and N. Sakamoto (2016). "Viral life cycle of hepatitis B virus: Host factors and druggable targets." Hepatol Res 46(9): 871-877.
    Morozov, V., M. Pisareva and M. Groudinin (2000). "Homologous recombination between different genotypes of hepatitis B virus." Gene 260(1-2): 55-65.
    Nassal, M. (2015). "HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B." Gut 64(12): 1972-1984.
    Nelson, N. P., D. J. Jamieson and T. V. Murphy (2014). "Prevention of Perinatal Hepatitis B Virus Transmission." J Pediatric Infect Dis Soc 3 Suppl 1: S7-s12.
    Ott, J. J., G. A. Stevens, J. Groeger and S. T. Wiersma (2012). "Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity." Vaccine 30(12): 2212-2219.
    Patil, M., N. Pabla and Z. Dong (2013). "Checkpoint kinase 1 in DNA damage response and cell cycle regulation." Cell Mol Life Sci 70(21): 4009-4021.
    Pol, S. (2005). "[Epidemiology and natural history of hepatitis B]." Rev Prat 55(6): 599-606.
    Pol, S. (2006). "[Natural history of hepatitis B infection]." Presse Med 35(2 Pt 2): 308-316.
    Pollack, J. R. and D. Ganem (1994). "Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis." J Virol 68(9): 5579-5587.
    Pommier, Y., E. Leo, H. Zhang and C. Marchand (2010). "DNA topoisomerases and their poisoning by anticancer and antibacterial drugs." Chem Biol 17(5): 421-433.
    Popper, H. (1975). "The ground glass hepatocyte as a diagnostic hint." Hum Pathol 6(4): 517-520.
    Pourquier, P., A. D. Jensen, S. S. Gong, Y. Pommier and C. E. Rogler (1999). "Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro." Nucleic Acids Res 27(8): 1919-1925.
    Qi, Y., Z. Gao, G. Xu, B. Peng, C. Liu, H. Yan, Q. Yao, G. Sun, Y. Liu, D. Tang, Z. Song, W. He, Y. Sun, J. T. Guo and W. Li (2016). "DNA Polymerase kappa Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus." PLoS Pathog 12(10): e1005893.
    Reece, R. J. and A. Maxwell (1991). "DNA gyrase: structure and function." Crit Rev Biochem Mol Biol 26(3-4): 335-375.
    Ricardo-Lax, I., V. Ramanan, E. Michailidis, T. Shamia, N. Reuven, C. M. Rice, A. Shlomai and Y. Shaul (2015). "Hepatitis B virus induces RNR-R2 expression via DNA damage response activation." J Hepatol 63(4): 789-796.
    Sadler, A. J. and B. R. Williams (2008). "Interferon-inducible antiviral effectors." Nat Rev Immunol 8(7): 559-568.
    Santantonio, T. A. and M. Fasano (2014). "Chronic hepatitis B: Advances in treatment." World J Hepatol 6(5): 284-292.
    Sertoz, O. O., O. K. Tuncel, M. I. Tasbakan, H. Pullukcu, I. R. D. Onmus, T. Yamazhan and H. Elbi (2017). "Depression and anxiety disorders during pegylated interferon treatment in patients with chronic hepatitis B." Psychiatry and Clinical Psychopharmacology 27(1): 47-53.
    Sheraz, M., J. Cheng, L. Tang, J. Chang and J. T. Guo (2019). "Cellular DNA Topoisomerases Are Required for the Synthesis of Hepatitis B Virus Covalently Closed Circular DNA." J Virol 93(11).
    Song, J. E. and D. Y. Kim (2016). "Diagnosis of hepatitis B." Ann Transl Med 4(18): 338.
    Sorensen, C. S., L. T. Hansen, J. Dziegielewski, R. G. Syljuasen, C. Lundin, J. Bartek and T. Helleday (2005). "The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair." Nat Cell Biol 7(2): 195-201.
    Takahashi, H., M. Matsuda, A. Kojima, T. Sata, T. Andoh, T. Kurata, K. Nagashima and W. W. Hall (1995). "Human immunodeficiency virus type 1 reverse transcriptase: enhancement of activity by interaction with cellular topoisomerase I." Proceedings of the National Academy of Sciences 92(12): 5694-5698.
    Tan, W. (2016). "Fighting the Hepatitis B Virus: Past, Present and Future."
    Tedder, R. S., S. Ijaz, N. Gilbert, J. A. Barbara, S. A. Corden, R. J. Gilson and E. H. Boxall (2002). "Evidence for a dynamic host-parasite relationship in e-negative hepatitis B carriers." J Med Virol 68(4): 505-512.
    Terrault, N. A., A. S. F. Lok, B. J. McMahon, K. M. Chang, J. P. Hwang, M. M. Jonas, R. S. Brown, Jr., N. H. Bzowej and J. B. Wong (2018). "Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance." Hepatology 67(4): 1560-1599.
    Testoni, B., D. Durantel and F. Zoulim (2017). "Novel targets for hepatitis B virus therapy." Liver Int 37 Suppl 1: 33-39.
    Toss, A., C. Tomasello, E. Razzaboni, G. Contu, G. Grandi, A. Cagnacci, R. J. Schilder and L. Cortesi (2015). "Hereditary ovarian cancer: not only BRCA 1 and 2 genes." Biomed Res Int 2015: 341723.
    Trepo, C., H. L. Chan and A. Lok (2014). "Hepatitis B virus infection." Lancet 384(9959): 2053-2063.
    Wang, H. P. and C. E. Rogler (1991). "Topoisomerase I-mediated integration of hepadnavirus DNA in vitro." J Virol 65(5): 2381-2392.
    Wang, J. C. (2002). "Cellular roles of DNA topoisomerases: a molecular perspective." Nat Rev Mol Cell Biol 3(6): 430-440.
    Weber, B. (2005). "Recent developments in the diagnosis and monitoring of HBV infection and role of the genetic variability of the S gene." Expert Rev Mol Diagn 5(1): 75-91.
    Wu, Y., N. Kantake, T. Sugiyama and S. C. Kowalczykowski (2008). "Rad51 protein controls Rad52-mediated DNA annealing." J Biol Chem 283(21): 14883-14892.
    Xia, Y., X. Cheng, Y. Li, K. Valdez, W. Chen and T. J. Liang (2018). "Hepatitis B Virus Deregulates the Cell Cycle To Promote Viral Replication and a Premalignant Phenotype." J Virol 92(19).
    Yan, H., G. Zhong, G. Xu, W. He, Z. Jing, Z. Gao, Y. Huang, Y. Qi, B. Peng, H. Wang, L. Fu, M. Song, P. Chen, W. Gao, B. Ren, Y. Sun, T. Cai, X. Feng, J. Sui and W. Li (2012). "Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus." Elife 1: e00049.
    Zeisel, M. B., J. Lucifora, W. S. Mason, C. Sureau, J. Beck, M. Levrero, M. Kann, P. A. Knolle, M. Benkirane, D. Durantel, M. L. Michel, B. Autran, F. L. Cosset, H. Strick-Marchand, C. Trepo, J. H. Kao, F. Carrat, K. Lacombe, R. F. Schinazi, F. Barre-Sinoussi, J. F. Delfraissy and F. Zoulim (2015). "Towards an HBV cure: state-of-the-art and unresolved questions--report of the ANRS workshop on HBV cure." Gut 64(8): 1314-1326.
    Zhang, Z. H., C. C. Wu, X. W. Chen, X. Li, J. Li and M. J. Lu (2016). "Genetic variation of hepatitis B virus and its significance for pathogenesis." World J Gastroenterol 22(1): 126-144.
    Zhao, B., M. J. Bower, P. J. McDevitt, H. Zhao, S. T. Davis, K. O. Johanson, S. M. Green, N. O. Concha and B. B. Zhou (2002). "Structural basis for Chk1 inhibition by UCN-01." J Biol Chem 277(48): 46609-46615.
    Zhou, L., J. H. Ren, S. T. Cheng, H. M. Xu, W. X. Chen, D. P. Chen, V. K. W. Wong, B. Y. K. Law, Y. Liu, X. F. Cai, H. Tang, H. B. Yu, J. L. Hu, Y. Hu, H. Z. Zhou, F. Ren, L. He, Z. W. Hu, H. Jiang, H. Y. Xu, A. L. Huang and J. Chen (2019). "A Functional Variant in Ubiquitin Conjugating Enzyme E2 L3 Contributes to Hepatitis B Virus Infection and Maintains Covalently Closed Circular DNA Stability by Inducing Degradation of Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3A." Hepatology 69(5): 1885-1902.
    Zhu, H. L., X. Li, J. Li and Z. H. Zhang (2016). "Genetic variation of occult hepatitis B virus infection." World J Gastroenterol 22(13): 3531-3546.

    無法下載圖示 校內:2024-11-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE