| 研究生: |
黃煒智 Huang, Wei-Chih |
|---|---|
| 論文名稱: |
以獸疫鏈球菌生產玻尿酸之醱酵製程開發 Fermentation Process Development for Microbial Production of Hyaluronic acid by Streptococcus zooepidemicus |
| 指導教授: |
陳特良
Chen, Teh-Liang |
| 共同指導教授: |
吳文騰
Wu, Wen-Teng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 玻尿酸醱酵 、透明質酸 、鏈球菌 、醱酵放大設計 、臨界溶氧值 、延遲生長關聯型模式 、批次醱酵 、重覆批次醱酵 |
| 外文關鍵詞: | Hyaluronic acid fermentation, Streptococcus zooepidemicus, Hyaluronan, Scaleup of fermentor, Critical dissolved oxygen concentration, Delayed growth-associated model, Batch processing, Repeated Batch |
| 相關次數: | 點閱:165 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中吾人先提出正確之鏈球菌生長曲線量測方法,此量測方法與細胞型態的改變有關。根據正確的生長曲線,吾人提出一延遲之生長關聯型模式。此模式不只可成功地模擬玻尿酸醱酵,亦適用於聚麩酸醱酵生產。
本研究中也詳細探究在規模放大程序中溶氧及攪拌在玻尿酸醱酵中的角色。真正影響玻尿酸合成之主要因子為溶氧值。5%空氣飽和濃度為其臨界溶氧值,只要醱酵過程中控制溶氧值在臨界值之上,即可維持菌體在最大玻尿酸合成效率。攪拌在玻尿酸醱酵中的角色為混合以促使氧氣吸收,而非釋放玻尿酸莢膜,且過高的攪拌速率會導致玻尿酸醱酵時間延長。因此,醱酵放大設計規範為,維持溶氧值在臨界溶氧值以上,並提供均勻且溫和的攪拌。
在本研究中探究以重覆批次醱酵程序進行玻尿酸醱酵。在傳統操作下,因醱酵液中含有抑制物,導致細胞最大比生長速率及玻尿酸比產率,隨著接種體積之增加而降低。於醱酵槽中安裝不織布,在置換醱酵液時,移除含抑制物之液體,並利用不織布纖維留下細胞作為接種。在此操作方式下,長時間操作生產後會有黏附性高、無玻尿酸生產力之突變株出現於醱酵液中,並黏附生長在不織布上,導致玻尿酸醱酵生產停止。研究中提出另一重覆批次操作,利用外接過濾器,在置換醱酵液時,先排除液體並留住部份細胞,再以新鮮培養液將滯留於過濾器之細胞,逆洗接種到醱酵槽中進行重覆批次醱酵。在此操作下細胞比生長速率及玻尿酸比產率,可成功地維持在原醱酵批次水準。在相當於31%醱酵液細胞接種量之操作條件下,重覆批次醱酵之體積產率為0.59 g HA L-1 h-1,為原批次培養之2.5倍。
In this study, an accurate determination of the growth curve of the cocoid cells was first discussed, which is relevant to the change of cell morphology after entry into the stationary phase. A delayed growth-associated model was then proposed for the HA production, which is in accordance with mechanisms of HA formation reported in the literature. The proposed model was employed satisfactorily not only for HA production, but also for poly-glutamic acid production.
The role of dissolved oxygen (DO) and function of agitation in hyaluronic acid fermentation by S. zooepidemicus were also explored. The intrinsic factor affecting the efficiency of HA synthesis is DO level; and there exists a critical DO level of 5% air saturation for the HA synthesis. On the other hand, agitation functions to mix the broth, to enhance oxygen absorption, but not to release HA capsule. In addition, vigorous agitation would lengthen the operation time. It therefore suggests that the relevant criteria for scaling up the fermentor are to maintain DO level above the critical value, and to provide a mild agitation for homogeneity in the fermentor.
The production of hyaluronic acid (HA) with repeated batch fermentation has been proposed. It was found that, with conventional operation, both maximal specific growth rate and specific HA productivity decreased with increasing seed volume, suggesting that there exist some inhibitors in the broth. The removal of liquid in the seed was first attempted by installing a nonwoven fabrics (NWF) in the fermentor to retain some of the cells when draining the broth. However, this resulted in a loss of HA productivity, which in turn was attributed to the growth of a sticky, non-HA-producing mutant on the NWF. Using an external cartridge filter to partially retain the cells, followed by back-washing the filter with fresh medium for seeding, specific growth rate and specific productivity could be maintained successfully at their batch levels during the repeated cycles. In an operation that seeded 31% cell, the volumetric production rate of the repeated batch culture (0.59 g HA L-1 h-1) was found to be 2.5-fold of the batch culture (0.24 g HA L-1 h-1).
Armstrong, D. C., and M. R. Johns, “Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus,” Appl. Environ. Microbiol., 63, 2759-2764 (1997).
Bitter, T., and H. M. Muir, “A modified uronic acid carbazole reaction,” Anal. Biochem., 4, 330-334 (1962).
Blank, L.M., R.L. McLaughlin, and L.K. Nielsen, “Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate,” Biotechnol. Bioeng. 90, 685-693 (2005).
Boas, N.F., “Isolation of hyaluronic acid from the cock’s comb,” J. Biol. Chem., 186, 573-575 (1950).
Cleary, P., and A. Larkin, “Hyaluronic acid capsule: strategy for oxygen resistance in group A streptococci,” J. Bioteriol., 140, 1090-1097 (1979).
Cooney, M. J., L. T. Goh, P. L. Lee, and M. R. Johns, “Structured model-based analysis and control of the hyaluronic acid fermentation by Streptococcus zooepidemicus: physiological implications of glucose and complex-nitrogen-limited growth,” Biotechnol. Prog., 15, 898-910 (1999).
Ellwood, D.C., C.G.T. Evans, G.M. Dunn, N. McInnes, R.G. Yeo, and K.J. Smith, “Production of hyaluronic acid,” US Patent 5,411,874 (1995).
European Markets for Facial Aesthetics, Millennium Research Group (2008)
Fong Chong, B. F, L.M. Blank, R. Mclaughlin, and L.K. Nielsen, “Microbial hyaluronic acid production,” Appl. Microbiol. Biotechnol. 66, 341-351 (2005) .
Fong Chong, B., and L. K. Nielsen, “Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase,” Biochem. Eng. J., 16, 153-162 (2003).
Gardner, J. M., and F. A, Troy, “Chemistry and biosynthesis of the poly(-glutamyl) capsule in Bacillus licheniformis,” J. Biol. Chem., 254, 6262 (1979).
Hardingham T., “Chemistry and biology of hyaluronan,” Elsevier. USA (2004)
Hasegawa, S., M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe, “Productivity of concentrated hyaluronic acid using a maxblend fermentor,” J. Biosci. Bioeng., 88, 68-71 (1999).
Hiruta, O., K. Yamamura, H. Takebe, T. Futamura, K. Iinuma, and H. Tanaka, “Application of maxblend fermentor for microbial process,” J. Ferment. Bioeng. 83, 79-86 (1997).
Holmström, B. and J. Řičica, “ Production of hyaluronic acid by a Streptococcal strain in batch culture,” Appl. Microbiol. 15, 1409-1413 (1967).
Jedrzejas, M.J., L.V. Mello, B.L. de Groot, and S. Li, “Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase,” J. Biol. Chem., 277, 28287-28297 (2002).
Johns, M. R., L. T. Goh, and A. Oeggerli, “Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus,” Biotechnol. Lett., 16, 507-512 (1994).
Kendall, F.E., M. Heidelberger, and M.H. Dawson, “A serologically inactive polysaccharide elaborated by mucoid strains group A hemolytic streptococcus,” J. Biol. Chem., 118, 61-69 (1937).
Kim J.H., S.J. Yoo, D.K. Oh, Y.G. Kweon, D.W. Park, C.H. Lee, and G.H. Gil, “Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid,” Enzyme Microb. Technol. 19, 440-445 (1996).
Laurent, T.C., “Biochemistry of hyaluronan,” Acta Otolaryngol., 42, 7-24 (1987).
Leonard, B.A.B., M. Woischnik, and A. Podbielski, “Production of stabilized virulence factor-negative variants by group A streptococci during stationary phase,” Infect. Immun. 66, 3841-3847 (1998).
Mausolf, A., J. Jungmann, H. Robenek, and P. Prehm, “Shedding of hyaluronate synthase from Streptococci,” Biochem. J., 267, 191-196 (1990).
Meyer, K., and E. Chaffee, “The mucopolysaccharides of skin,” J. Biol. Chem., 138, 491-499 (1941).
Meyer, K., and J.W. Palmer, “On glycoproteins: II. The polysaccharides of vitreous humor and of umbilical cord,” J. Biol. Chem., 114, 689-703 (1936).
Meyer, K., and J.W. Palmer, “The polysaccharide of the vitreous humor,” J. Biol. Chem., 107, 629-634 (1934).
Meyer, K., E.M. Smyth, and M.H. Dawson, “The isolation of a mucopolysaccharide from synovial fluid,” J. Biol. Chem., 128, 319-327 (1939).
Nickel, V., S. Prehm, M. Lansing, and A. Mausolf, A. Podbielski, J. Deutscher, and P. Prehm, “An ectoprotein kinase of group C Streptococci binds hyaluronan and regulates capsule formation,” J. Biol. Chem., 273, 23668-23673 (1998).
Richard, A., and A. Margaritis, “Empirical modeling of batch fermentation kinetics for poly(glutamic acid) production and other microbial biopolymers,” Biotechnol. Bioeng., 87, 501-515 (2004).
Saari, H, Y.T. Konttinen, C. Friman, and T. Sorsa “Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate,” Inflammation 17:403-415. (1993)
Scott, J. E., Healey, F. and Hull, W., “Secondary structure of hyaluronate in solution,” Biochem. J., 220, 197-205 (1984)
Scott, J. E., Thomlinson, A. M., and Prehm, P., “Supramolecular organization in streptococcal pericellular capsules is based on hyaluronan tertiary structures,” Experimental Cell Research, 285, 1-8 (2003)
Stoolmiller, A.C., and A. Dorfman, “The biosynthesis of hyaluronic acid by Streptococcus,” J. Biol. Chem., 244, 236-246 (1969).
Sugahara, K., N. B. Schwartz, and A. Dorfman, “Biosynthesis of hyaluronic acid by Streptococcus,” J. Biol. Chem., 254, 6252-6261 (1979).
Terzaghi, B.E., and W.E. Sandine, “Improved medium for lactic Streptococci and their bacteriophages,” Appl. Microbiol. 29, 807-813 (1975).
Thonard, J.C., S.A. Migliore, and R. Blustein, “Isolation of hyaluronic acid from broth cultures of Streptococci,” J. Biol. Chem., 239, 726-728 (1964).
van de Rijn I., and R.E. Kessler, “Growth characteristics of group A streptococci in a new chemically defined medium”, Infect. Immun. 27, 444-448 (1967)
van de Rijn, I., “Streptococcal hyaluronic acid: proposed mechanisms of degradation and loss of synthesis during stationary phase, ” J. Bacteriol., 156, 1059-1065 (1983).
Yoon, S. H., J. H. Do, S. Y. Lee, and H. N. Chang, “Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis,” Biotechnol. Lett., 22, 585-588 (2000).