簡易檢索 / 詳目顯示

研究生: 鄭智元
Zheng, Zhi-Yuan
論文名稱: 發展用於皮膚色團定量之非接觸式掃描型漫反射光譜系統
Development of Non-contact scanning Diffuse Reflectance Spectroscopy for Skin Chromophore Quantification
指導教授: 曾盛豪
Zeng, Sheng-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 47
中文關鍵詞: 漫反射光譜學掃描式非接觸式微機電反射鏡吸收係數散射係數色團擬合蒙地卡羅法人工類神經網路
外文關鍵詞: Diffuse reflectance spectroscopy, Scanning, Non-contact, MEMS mirror, Absorption coefficient, Reduced scattering coefficient, Chromophore fitting, Monte Carlo Method, Artificial Neural Networks
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中提出了一套掃描型非接觸式漫反射光譜量測系統,本系統的量測光譜波段為500-1000nm。利用微機電反射鏡(Microelectromechanical System Mirror, MEMS Mirror)達到快速調控光源與偵測器之距離,並配合電控可變焦透鏡(Tunable Lens)同步調整偵測點聚焦位置,接收待測物表面之漫反射光訊號,達到一維的掃描式量測架構。最後,結合蒙地卡羅法(Monte Carlo Method)及人工類神經網路(Artificial Neural Network, ANN),用於獲取淺層皮膚組織之光學特性並擬合出生理參數。
    在本研究中,以蒙地卡羅模擬光源斜向入射與偵測器斜向收光兩種模型的角度限制與誤差,驗證本研究團隊已開發之接觸式漫反射光譜系統之人工類神經網路適用於非接觸是漫反射光譜系統,並以量測仿體驗證光源端與偵測端兩種非接觸式漫反射光譜系統的可行性與準確性。其次,結合上述兩套系統,再次以量測仿體驗證完整漫反射光譜系統之可行性與準確性,並探討若用於人體量測時,因人體組織曲面對系統量測距離造成的影響。最後,本研究挑選了三位膚色差異明顯的自願受測者,在正常與靜脈閉鎖兩種狀態下,進行一維的掃描式量測,比較其組織血氧濃度、血紅素與黑色素等色團之變化。

    In this study, we proposed a non-contact scanning diffuse reflectance spectroscopy measurement system. This system uses the supercontinuum laser, which is a broadband and steady-state light. Use Microelectromechanical System Mirror (MEMS Mirror) as a scanning mechanism to quickly switch source and detector separations and change measurement position. Simultaneously, collect diffuse reflectance spectroscopy signal and match focal length by tunable lens. Achieve one-dimensional scanning measurement structure. The Algorithm combine Monte Carlo Method (MCML) and Artificial Neural Network (ANN) to obtain optical properties from superficial skin tissue. Second, we demonstrate the system feasibility and accuracy by phantom. Finally, we select three volunteers, whom skin colour is differences, significantly. Compare those tissue oxygen concentration, oxyhemoglobin, melanin, and other chromophores in vivo.

    中文摘要 I ABSTRACT II SUMMARY II INTRODUCTION II MATERIALS AND METHODS III RESULTS AND DISCUSSION III CONCLUSION IV 致謝 V 目錄 VII 表目錄 IX 圖目錄 X 符號列表 XII 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 第二章 理論背景 5 2.1. 漫反射光譜學(Diffuse Reflection Spectroscopy, DRS) 5 2.2. 蒙地卡羅(Monte Carlo Method) 6 2.3. 人工類神經網路(Artificial Neural Network, ANN) 9 2.4. 色團擬合(Chromophore fitting) 11 第三章 材料與方法 13 3.1. 微機電反射鏡(Microelectromechanical Systems Mirror, MEMS Mirror) 13 3.2. 仿人體組織之假體 14 3.2.1. 仿體製作 14 3.2.2. 仿體校正 15 3.3. 光源端非接觸式漫反射光譜系統 17 3.3.1. 光源端斜向入射之理論模型 17 3.3.2. 光源端非接觸式漫反射光譜系統之架構 18 3.4. 偵測端非接觸式漫反射光譜系統 19 3.4.1. 偵測端斜向收光之理論模型 19 3.4.2. 電控可調焦透鏡(Tunable Lens) 20 3.4.3. 偵測端非接觸式漫反射光譜系統之架構 21 3.5. 完整非接觸式漫反射光譜系統 22 第四章 結果與討論 23 4.1. 光源端非接觸式系統 23 4.1.1. 光源端斜向入射理論模型之驗證 23 4.1.2. 光源端非接觸式漫反射光譜系統之仿體驗證 25 4.2. 偵測端非接觸式漫反射光譜系統 28 4.2.1. 偵測端斜向收光之理論模型 28 4.2.2. 電控可調焦透鏡之效果 30 4.2.3. 偵測端非接觸式漫反射光譜系統之仿體驗證 31 4.3. 完整非接觸式漫反射光譜系統 34 4.3.1. 完整非接觸式漫反射光譜系統之仿體驗證 34 4.3.2. 系統偵測器與待測面之量測距離容許誤差範圍測試 37 4.3.3. 人體手臂上肢內側之一維掃描量測 38 第五章 結論與未來工作 43 5.1. 結論 43 5.2. 未來工作 44 參考文獻 45

    [1]. Lee, J.Y., et al., Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery, 2016. 79(6): p. 856-871.
    [2]. Huang, D., et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81.
    [3]. Xi, L., et al., Photoacoustic imaging based on MEMS mirror scanning. Biomed Opt Express, 2010. 1(5): p. 1278-1283.
    [4]. Doornbos, R.M., et al., The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Phys Med Biol, 1999. 44(4): p. 967-81.
    [5]. Tseng, S.H., A. Grant, and A.J. Durkin, In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy. J Biomed Opt, 2008. 13(1): p. 014016.
    [6]. Zonios, G., J. Bykowski, and N. Kollias, Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol, 2001. 117(6): p. 1452-7.
    [7]. Tseng, S.H., et al., Chromophore concentrations, absorption and scattering properties of human skin in-vivo. Opt Express, 2009. 17(17): p. 14599-617.
    [8]. Tseng, S.H., et al., Investigation of a probe design for facilitating the uses of the standard photon diffusion equation at short source-detector separations: Monte Carlo simulations. J Biomed Opt, 2009. 14(5): p. 054043.
    [9]. Tseng, S.H., et al., Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study. J Biomed Opt, 2012. 17(7): p. 077005.
    [10]. Volynskaya, Z., et al., Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt, 2008. 13(2): p. 024012.
    [11]. Durduran, T., et al., Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett, 2004. 29(15): p. 1766-8.
    [12]. Zhou, C., et al., Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Opt, 2009. 14(3): p. 034015.
    [13]. Yu, G., et al., Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies. J Biomed Opt, 2005. 10(2): p. 024027.
    [14]. Tseng, S.H., et al., Quantitative spectroscopy of superficial turbid media. Opt Lett, 2005. 30(23): p. 3165-7.
    [15]. Reif, R., et al., Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures. J Biomed Opt, 2008. 13(1): p. 010502.
    [16]. Popov, A.P., A.V. Bykov, and I.V. Meglinski, Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo. J Biomed Opt, 2017. 22(11): p. 1-4.
    [17]. Cugmas, B., et al., Pressure-induced near infrared spectra response as a valuable source of information for soft tissue classification. J Biomed Opt, 2013. 18(4): p. 047002.
    [18]. Andree, S., et al., Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms. J Biomed Opt, 2010. 15(6): p. 067009.
    [19]. Bish, S.F., et al., Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties. J Biomed Opt, 2011. 16(12): p. 120505.
    [20]. Bish, S.F., et al., Handheld Diffuse Reflectance Spectral Imaging (DRSi) for in-vivo characterization of skin. Biomed Opt Express, 2014. 5(2): p. 573-86.
    [21]. Sorgato, V., et al., ACA-Pro: calibration protocol for quantitative diffuse reflectance spectroscopy. Validation on contact and noncontact probe- and CCD-based systems. J Biomed Opt, 2016. 21(6): p. 65003.
    [22]. Alerstam, E., T. Svensson, and S. Andersson-Engels, Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt, 2008. 13(6): p. 060504.
    [23]. Banerjee, S. and S.K. Sharma, Use of Monte Carlo simulations for propagation of light in biomedical tissues. Appl Opt, 2010. 49(22): p. 4152-9.
    [24]. Wang, L., S.L. Jacques, and L. Zheng, MCML--Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed, 1995. 47(2): p. 131-46.
    [25]. Chen, Y.W. and S.H. Tseng, Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties. Biomed Opt Express, 2015. 6(3): p. 747-60.
    [26]. Farrell, T.J., B.C. Wilson, and M.S. Patterson, The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements. Phys Med Biol, 1992. 37(12): p. 2281-6.
    [27]. Bydlon, T.M., et al., Chromophore based analyses of steady-state diffuse reflectance spectroscopy: current status and perspectives for clinical adoption. J Biophotonics, 2015. 8(1-2): p. 9-24.
    [28]. Stamatas, G.N. and N. Kollias, Blood stasis contributions to the perception of skin pigmentation. J Biomed Opt, 2004. 9(2): p. 315-22.

    無法下載圖示 校內:2023-03-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE