| 研究生: |
邱懷慶 Chiu, Huai-Ching |
|---|---|
| 論文名稱: |
氮化鎵藍光二極體之研製及應用表面處理改善其特性之研究 Fabrication and Characteristic Improvement of GaN Blue LED by Surface Treatment |
| 指導教授: |
洪茂峰
Houng, Mau-Phon 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 電感耦合電漿蝕刻 、氮化鎵 、發光二極體 |
| 外文關鍵詞: | light emitting diode, GaN, inductively coupled plasma |
| 相關次數: | 點閱:83 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於大多數氮化鎵系列發光二極體都成長在絕緣性的藍寶石基板上,使得元件的正負極皆在基板的上方。因此在本論文中,我們利用電感耦合電漿蝕刻技術來製作藍光二極體,並利用交流濺鍍系統沈積實驗過程中所需之薄膜。
電感耦合電漿蝕刻的系統參數當中,我們由實驗過程可以發現:對氮化鎵的乾蝕刻而言,氯氣(Cl2)以及三氯化硼(BCl3)的混合氣體可以達到不錯的蝕刻效果。其中當氯氣比例為百分之九十的時候為最佳化的條件。另外,在工作壓力對蝕刻的影響方面,我們可以發現壓力大於15*10-3托耳(torr)的時候,表面聚合物的累積會明顯增加,而且這將會影響到化學蝕刻反應以及蝕刻速率的穩定性。
對透明導電層而言,表面處理是必須而且有效提高特性的方法。利用傳輸線模型以及歐傑電子光譜儀等分析我們可以發現在熱處理過後,透明導電層在歐姆特性、穿透率以及發光效率上皆有顯著的改善。
Most GaN-based LEDs are grown on the insulated sapphire substrates and as a result, the p-pad and n-pad are both deposited on the top side of substrate. In this thesis, we use inductively coupled plasma (ICP) to fabricate blue LEDs and RF sputtering system to deposit thin films.
Among parameters of ICP system, it is observed that the mixed gases of Cl2 and BCl3 are suitable for the GaN plasma etching. And based on our experiment, the optimal condition is obtained with the Cl2 ratio reaches 90%. Besides, the working pressure is another major parameter for ICP. It is found that when pressure is higher than 15 mtorr, it will increase the piling up of residuals on surface.
As far as transparent conductive layer (TCL) is concerned, the surface treatment is essential and effective method to improve its characteristics. By TLM, AES depth profiles and other analysis we can find that electrical and optical performance of TCL are evidently improved by thermal treatment.
[1] H. Morkoc and S.N. Mohammad, Science 267, 51, 1995
[2] S.J. Pearton, J.C. Zolper, R.J.Shul, F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys.68, 1, 1999
[3] M. Scherer, V. Schwegler, M. Seyboth, C. Kirchner, and M. Kamp, “Low resistive p-type GaN using two-step rapid thermal annealing processes”, J. Appl. Phys. 89, 8339, 2001
[4] T. S. Jen, N. F. Shin, L. H. Laih, Y. A. Chen, J. W. Hong, C. Y. Chang, “Electrical and luminescent characteristics of a-SiC:H p-i-n thin-film LED'S with graded-gap junctions”, Electron Devices, IEEE Transactions, 44, 565, 1997
[5] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys. 76, 1363, 1994
[6] Shirakawa, Tsuguru, “Effect of defects on the degradation of ZnSe-based white LEDs”, Materials Science and Engineering: B. 91, 470, 2002
[7] H. Wenisch, M. Fehrer, M. Klude, K. Ohkawa, D. Hommel, “Internal photoluminescence in ZnSe homoepitaxy and application in blue–green–orange mixed-color light-emitting diodes”, Journal of Crystal Growth, 214, 1075, 2000
[8] M.D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 84, 1281, 2004
[9] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Appl. Phys. Lett. 48, 353, 1986
[10] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys., 28, 12, L2112, 1989
[11] S. Nakamura, Jpn. J. Appl. Phys., 31 (2B), L139, 1992
[12] R. Juza, and H. Hahn, Z. Anorg. Allgem. Chem. 234, 282, 1938, and 244, 133, 1940
[13] H. Grimmeiss, and Z. H-Koelmans, Nature 14a 264, 1959
[14] F. A. Ponce and D. P. Bour, Nature (London) 386,351, 1997
[15] H. M. Manasevit, F.M. Erdmann, W. I. Simpson, J. Electrochem. Soc. 118, 1864, 1971
[16] Akasaki and I. Hayashi, Ind. Sci. Technol. 17, 48, 1976
[17] S.J. Pearton, “GaN and Related Materials”, Overseas Publishers Association, 1997
[18] S.J. Pearton, J.W. Corbett, and M. Stavola, “Hydrogen in Crystalline Semiconductors”, Springer, Berlin, 1992
[19] R.J. Street, “Hydrogenated Amorphous Silicon”, Cambridge University Press, NY, 1991
[20] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. 64, 1687, 1994
[21] S. J. Hwang, W. Shan, R. J. Hauenstein, J. J. Song, M.-E. Lin, S. Strite, B. N. Sverdlov, and H. Morkoc, “Photoluminescence of zinc-blende GaN under hydrostatic pressure”, Appl. Phys. Lett. 64, 2928, 1994
[22] C. H. Hong, D. Pavilidis, S. W. Brown and S.C. Rand, “Photoluminescence investigation of GaN films grown by metalorganic chemical vapor deposition on (100) GaAs”, J.Appl. Phys. 77, 1705, 1995
[23] S. Strite, “GaN Core Relaxation Effects and Their Ramifications for P-Type Doping”, Jpn. J. Appl. Phys. 33, L699, 1994
[24] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, 2003
[25] K. J. Knopp, R. P. Mirin, K. A. Bertness, K. L. Silverman, and D. H. Christensen, “Compound semiconductor oxide antireflection coatings”, J. Appl. Phys., 87, 7169, 2000
[26] M. W. Cole, F. Ren, and S. J. Pearton, “Post growth rapid thermal annealing of GaN: The relationship between annealing temperature, GaN crystal quality, and contact-GaN interfacial structure”, Appl. Phys. Lett., 71, 3004, 1997
[27] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett., 77, 1903, 2000
[28] H. Kim, S. P. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-Based light-emitting diodes”, IEEE Trans. Electron Device, 48, 1065, 2001
[29] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer”, J. Appl. Phys., 92, 2248, 2002
[30] Y. T. Lu, “Improvement in light output efficiency of InGaN/GaN blue LED by current blocking layer and surface passivation layer”, Thesis of E.E. 2003, NCKU, Taiwan
[31] Y. H. Chen, “Improvement in light-output intensity of GaN-based LED device by selective area activation”, Thesis of E.E. 2003, NCKU, Taiwan.
[32] S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys., 86, 1, 1999
[33] C. Youtsey, I. Adesida, G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., 71, 2151, 1997
[34] M.S. Minsky, M. White, and E.L. Hu, “Room-temperature photoenhanced wet etching of GaN”, Appl. Phys. Lett. 68, 1531, 1996
[35] P. Gillis, D. A. Choutov, P. A. Steiner, J. D. Piper, J. H. Crouch, P. M. Dove, and K. P. Martin, “Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma”, Appl. Phys. Lett. 66, 2475, 1995
[36] R. J. Shul, in Processing of Wide Bandgap Semiconductors, edited by S.J. Pearton, Noyes, Park Ridge, NJ, 1999
[37] Adesida, A. Mahajan, E. Andideh, M. Asif Khan, D.T. Olsen, and J.N. Kuznia, “Reactive ion etching of gallium nitride in silicon tetrachloride plasmas”, Appl. Phys. Lett. 63, 2777, 1993
[38] Adesida, A.T. Ping, C. Youtsey, T. Sow, M. Asif Khan, D.T. Olson, J.N. Kuznia, “Characteristics of chemically assisted ion beam etching of gallium nitride”, Appl. Phys. Lett. 65, 889, 1994
[39] W. A. Harrison, “Electronic Structure and Properties of Solids”, Freeman, Sna Francisco, 1980
[40] R. J. Shul, G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton and R. Abernathy, Solid-State Electronica, 42, 12, 1998
[41] S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, P. W. Wisk, A. Katz, and C. Constantine, Semicond. Sci. Technol. 8, 310, 1993
[42] R. J. Shul, R. D. Briggs, J. Han, S. J. Pearton, J. W. Lee, C. B. Vartuli, K. P. Killeen, and M. J. Ludowise, Mater. Res. Soc. Symp. Proc. 468, 355, 1997
[43] J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, C.C. Liu, C.M. Chang, and W.C. Hung, “Inductively coupled plasma etching of GaN using Cl[sub 2]/Ar and Cl[sub 2]/N[sub 2] gases”, J. Appl. Phys., 85, 1970, 1999
[44] F. Braun, Annal. Phys. Chem., 153, 556, 1874
[45] S. M. Sze, “Physics of semiconductor devices”, second edition, John Wiley & Sons, Inc., 1981
[46] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer Ohmic contact to n-GaN”, Appl. Phys. Lett. 68, 1672, 1996
[47] S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, Electron Lett. 34, 2354, 1998
[48] Motayed, R. Bathe, M.C. Wood, O.S. Diouf, R.D. Vispute, and S. Noor Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys., 93, 1087, 2003
[49] P. Luther, S. E. Mohney, J. M. Delucca, and R. F. Karlicek, Jr., J. Electron. Mater. 27, 196, 1998
[50] S. Ruvimov, Z. L. Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN”, Appl. Phys. Lett. 69, 1556, 1996
[51] B. P. Luther, S. E. Mohney, T. N. Jackson, M. A. Khan, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN”, Appl. Phys. Lett. 70, 57, 1997
[52] L. F. Lester, J. M. Brown, J. C. Ramer, L. Zhang, S. D. Hersee, and J. C. Zolper, “Nonalloyed Ti/Al Ohmic contacts to n-type GaN using high-temperature premetallization anneal”, Appl. Phys. Lett. 69, 2737, 1996
[53] J. C. Zolper, D. J. Rieger, A. G. Baca, S. J. Pearton, J. W. Lee, and R. A. Stall, “Photothermal measurements on amorphous thin films deposited on crystalline silicon”, Appl. Phys. Lett. 68, 538, 1996
[54] J. Burn, K. Chu, W. A. Davis, W. J. Schaff, L. F. Eastman, and T. J. Eustis, “Ultra-low resistive ohmic contacts on n-GaN using Si implantation”, Appl. Phys. Lett. 70, 464, 1997
[55] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315, 1997
[56] J.K. Sheu, Y.K. Su, G.C. Chi, W.C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E.K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172, 1998
[57] T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, and M. Murakami, “Development of Pt-based ohmic contact materials for p-type GaN”, J. Appl. Phys.,89, 2826, 2001
[58] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment”, Appl. Phys. Lett. 73, 2953, 1998
[59] Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang, S.C. Shei, C.W. Kuo, S.C. Chen, Solid-State Electronics, 47 849-853, 2003
[60] C. Huh, H.S. Kim, S.W. Kim, J. M. Lee, D.J. Kim, I.H. Lee, and S.J. Park, “InGaN/GaN multiple quantum well light-emitting diodes with highly transparent Pt thin film contact on p-GaN”, J. Appl. Phys., 87, 4464, 2000
[61] Lin, Y.C.; Chang, S.J.; Su, Y.K.; Tsai, T.Y.; Chang, C.S.; Shei, S.C.; Hsu, S.J.; Liu, C.H.; Liaw, U.H.; Chen, S.C.; Huang,”Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts”, Photonics Technology Letters, IEEE , 14, 1668, 2002
[62] H.W. Jang, S.Y. Kim and J.L. Lee, “Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN”, J. Appl. Phys., 94, 1748, 2003
[63] J. K. Ho, C. S. Jong , C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films”, J. Appl. Phys., 86, 4491, 1999
[64] L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, K. K. Shih, R. F. Chen, J. J. Kai, and L. Chang, “Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN”, Appl. Phys. Lett. 76, 3703, 2000
[65] J. L. Richards and W. H. McCann, J. Vax. Aci. Technol. 6, 644, 1969
[66] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN”, J. Appl. Phys., 86, 3826, 1999
[67] M. Kiuchi and A. Chayahara, “Titanium nitride for transparent conductors”, Appl. Phys. Lett., 64, 1048, 1994
[68] M. Kiuchi, A. Chayahara, M. Tarutani, Y. Takai, and R. Shimizu, “The microstructure of transparent and electrically conducting titanium nitride films”, Materials Chemistry and Physics 54, 330, 1998