| 研究生: |
張書婕 Chang, Shu-Chieh |
|---|---|
| 論文名稱: |
利用醣蛋白質體方法尋找血漿中新穎口腔癌生物標記 Identification of novel plasma biomarkers for oral cancer screening by glycoproteomic approaches |
| 指導教授: |
張權發
Chang, Chuan-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 口腔癌 、生物標記 、核心岩藻醣化 、脂蛋白元A-IV |
| 外文關鍵詞: | Oral cancer, Biomarker, Core fucosylation, Apolipoprotein A-IV |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔癌在印度、巴基斯坦、孟加拉共和國、斯里蘭卡與台灣等國家有極高的盛行率,且致死率更是逐年升高。抽菸、酗酒與嚼檳榔被認為是主要的致病因子。儘管過去已有研究發現許多口腔癌相關的生物標記,但能夠真正輔助臨床診斷的非常少。因此,發展出有效的口腔癌生物標記,對於目前口腔癌的發展趨勢來說,是非常緊迫的。在先前的研究中,我們發現口腔癌組織與血漿中,核心岩藻糖(core fucose)及其酵素岩藻糖轉移酶8(Fucosyltrnsferase 8, FUT8) 的含量,都比正常人高出許多。因此,本研究希望能利用醣蛋白質體(glycoproteomics)方法,找出血中帶有核心岩藻醣基化之醣蛋白作為有效的口腔癌生物標記。首先,將所有血漿樣本注入橙黃網孢盤菌(Aleuria aurantia)凝集素親和層析管柱,純化出帶有核心岩藻醣基化之蛋白,再利用電泳法及液相層析串聯式質譜儀分析。最終找出了14種血漿醣蛋白,並以西方墨點法分析血中含量,其中,藍胞漿素(Ceruloplasmin)、血紅素結合蛋白(Haptoglobin)、富亮氨酸α2醣蛋白1(Leucine-rich alpha-2 glycoprotein 1, LRG1)在口腔癌病人血漿中濃度上升,而脂蛋白元A-I(Apolipoprotein A-I)及脂蛋白元A-IV(Apolipoprotein A-IV)則有下降趨勢。接著,我們增加樣本數並利用酵素免疫分析法作確認,發現脂蛋白元A-IV不論是在血中真實濃度,或與血中總蛋白之相對濃度(Apo A-IV/Total protein),在口腔癌血漿中都有下降的趨勢;富亮氨酸α2醣蛋白1即使在血中真實濃度沒有明顯變化,但在血中總蛋白之相對濃度(LRG1/Total protein)則呈現明顯上升趨勢。在ROC曲線(receiver operating characteristic curve)分析中,我們發現結合脂蛋白元A-IV與富亮氨酸α2醣蛋白1/總蛋白比值,在分辨口腔癌病患的表現上有良好的敏感度與特異度。此外,脂蛋白元A-IV在驗證組別中,也同樣有良好的分辨能力。因此,根據本研究結果,我們認為脂蛋白元A-IV與富亮氨酸α2醣蛋白1是有潛力的口腔癌生物標記蛋白,在未來也許能發展出有效的方法,幫助口腔癌的篩檢與診斷。
Oral cancer with high incidence rate is occurring in many countries including India, Pakistan, Bangladesh, Sri Lanka and Taiwan. Smoking, alcoholism, and betel nuts chewing are considered the main risk factors for oral cancer. Further, oral cancer caused deaths are also increased year by year. Although several oral cancer associated biomarkers have been reported, very little of useful biomarkers have been identified for clinical diagnosis. Therefore, to investigate oral cancer specific biomarkers is urgently needed. We previously analyzed oral cancer tissue and plasma glycomes and found that mRNA level of FUT8 and core-fucosylation level of plasma proteins were both increased in oral cancer patients compared to normal group. In this study, we aim to discover novel core-fucosylated glycoprotein biomarkers for oral cancer diagnosis by glycoproteomic approaches. First, all of the plasma samples were subjected into AAL (Aleuria aurantia lectin) affinity chromatography. The core-fucosylated proteins were collected and applied for LC-MS/MS after electrophoresis. Finally, 14 proteins were identified and the expression levels of the proteins in plasma were verified by western blot. The expression levels of some glycoproteins were elevated in oral cancer group such as ceruloplasmin, haptoglobin, and leucin-rich alpha-2-glycoprotein 1 (LRG1). However, some glycoproteins were decreased in cancer group including apolipoprotein A-I (apo A-I) and apolipoprotein A-IV (apo A-IV). Further verified by ELISA analysis with larger sample size, we found that the level of apo A-IV were decreased in plasma level accompanied with a decreased apo A-IV/total protein ratio in oral cancer patients. LRG1/total protein ratio was found to elevate while plasma level of LRG1 was found no difference in oral cancer plasma compared to normal group. ROC curve analysis showed well diagnosis performance when combining Apo A-IV level and LRG1/total protein ratio. Moreover, we validated the plasma levels of the apo A-IV with validation group and obtained good diagnostic performance as well. Taken together, apo A-IV and LRG1 with good performance in detecting oral cancer can become useful biomarkers and have potential to establish a useful methodology for oral cancer screening.
1. Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R. Epidemiology of oral cancer in Asia in the past decade--an update (2000-2012). Asian Pac J Cancer Prev. 2013;14(10):5567-77. doi: 10.1038/nrc3982. PubMed PMID: 24289546.
2. Taiwan Cancer Registry. 癌症五年相對存活率 2014. Available from: http://tcr.cph.ntu.edu.tw/main.php?Page=A1.
3. The Oral Cancer Foundation. Cancer screening protocols 2016. Available from: http://oralcancerfoundation.org/discovery-diagnosis/cancer-screening-protocols/.
4. Institute. NC. Oral Cavity and Oropharyngeal Cancer Screening 2016 [updated June 15, 2016 ]. Available from: https://www.cancer.gov/types/head-and-neck/patient/oral-screening-pdq#section/_24.
5. Fernandez-Olavarria A, Mosquera-Perez R, Diaz-Sanchez RM, Serrera-Figallo MA, Gutierrez-Perez JL, Torres-Lagares D. The role of serum biomarkers in the diagnosis and prognosis of oral cancer: A systematic review. J Clin Exp Dent. 2016;8(2):e184-93. doi: 10.4317/jced.52736. PubMed PMID: 27034760; PubMed Central PMCID: PMCPMC4808315.
6. Joshi M, Patil R. Estimation and comparative study of serum total sialic acid levels as tumor markers in oral cancer and precancer. J Can Res Ther. 2010;6(3): 263-6. doi: 10.4103/0973-1482.73339.
7. Zhao Y, Ju Q, Li G. Tumor markers for hepatocellular carcinoma (Review). Molecular and Clinical Oncology. 2013;1(4):593-8. doi: https://doi.org/10.3892/mco.2013.119.
8. Su BB, Shi H, Wan J. Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World J Gastroentero. 2012;18(17):2121-6. doi: 10.3748/wjg.v18.i17.2121. PubMed PMID: WOS:000303964500017.
9. Gupta D, Lis CG. Role of CA125 in predicting ovarian cancer survival - a review of the epidemiological literature. J Ovarian Res. 2009;2:13. doi: 10.1186/1757-2215-2-13. PubMed PMID: 19818123; PubMed Central PMCID: PMCPMC2764643.
10. Vukobrat-Bijedic Z, Husic-Selimovic A, Sofic A, Bijedic N, Bjelogrlic I, Gogov B, et al. Cancer Antigens (CEA and CA 19-9) as Markers of Advanced Stage of Colorectal Carcinoma. Med Arch. 2013;67(6):397-401. doi: 10.5455/medarh.2013.67.397-401. PubMed PMID: 25568506; PubMed Central PMCID: PMCPMC4272469.
11. Feng XY, Li JH, Li JZ, Han ZX, Xing RD. Serum SCCA, Cyfra 21-1, EGFR and Cyclin D1 levels in patients with oral squamous cell carcinoma. Int J Biol Markers. 2010;25(2):93-8. PubMed PMID: 20586028.
12. Khandavilli SD, Ceallaigh PO, Lloyd CJ. Serum C-reactive protein as a prognostic indicator in patients with oral Squamous cell carcinoma. Oral Oncol 2009;45:912-4.
13. Tadbir AA, Purshahidi S, Ebrahimi H, Khademi B, Malekzadeh M, Mardani M, et al. Serum level of MMP-3 in patients with oral squamous cell carcinoma--lack of association with clinico-pathological features. Asian Pac J Cancer Prev. 2012;13(9):4545-8. PubMed PMID: 23167377.
14. Kumar S, Saxena M, Srinivas K, Singh VK. Fucose: A biomarker in grading of oral cancer. Natl J Maxillofac Surg. 2015;6(2):176-9. doi: 10.4103/0975-5950.183869. PubMed PMID: 27390492; PubMed Central PMCID: PMCPMC4922228.
15. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540-55. doi: 10.1038/nrc3982. PubMed PMID: 26289314.
16. Xu C, Ng DT. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol. 2015;16(12):742-52. doi: 10.1038/nrm4073. PubMed PMID: 26465718.
17. Stanley P, Schachter H, Taniguchi N. N-Glycans. In: Varki A CR, Esko JD, et al., editor. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.
18. Lodish H, Berk A, Zipursky SL. Protein Glycosylation in the ER and Golgi Complex. Molecular Cell Biology. 4th edition ed. New York: W. H. Freeman; 2000.
19. Varki A, Freeze HH, Vacquier VD. Glycans in Development and Systemic Physiology. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., editors. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor (NY)2009.
20. Kannagi R, Yin J, Miyazaki K, Izawa M. Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants--Hakomori's concepts revisited. Biochim Biophys Acta. 2008;1780(3):525-31. doi: 10.1016/j.bbagen.2007.10.007. PubMed PMID: 17980710.
21. Varki A, Kannagi R, Toole BP. Glycosylation Changes in Cancer. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al., editors. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor (NY)2009.
22. Hauselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol. 2014;4:28. doi: 10.3389/fonc.2014.00028. PubMed PMID: 24592356; PubMed Central PMCID: PMCPMC3923139.
23. Loureiro LR, Carrascal MA, Barbas A, Ramalho JS, Novo C, Delannoy P, et al. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules. 2015;5(3):1783-809. doi: 10.3390/biom5031783. PubMed PMID: 26270678; PubMed Central PMCID: PMCPMC4598775.
24. Munkley J. The Role of Sialyl-Tn in Cancer. Int J Mol Sci. 2016;17(3):275. doi: 10.3390/ijms17030275. PubMed PMID: 26927062; PubMed Central PMCID: PMCPMC4813139.
25. Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget. 2016;7(23):35478-89. doi: 10.18632/oncotarget.8155. PubMed PMID: 27007155; PubMed Central PMCID: PMCPMC5085245.
26. Pinho SS, Carvalho S, Marcos-Pinto R, Magalhaes A, Oliveira C, Gu J, et al. Gastric cancer: adding glycosylation to the equation. Trends Mol Med. 2013;19(11):664-76. doi: 10.1016/j.molmed.2013.07.003. PubMed PMID: 23932995.
27. Pinho SS, Reis CA, Paredes J, Magalhaes AM, Ferreira AC, Figueiredo J, et al. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet. 2009;18(14):2599-608. doi: 10.1093/hmg/ddp194. PubMed PMID: 19403558.
28. Varelas X, Bouchie MP, Kukuruzinska MA. Protein N-glycosylation in oral cancer: dysregulated cellular networks among DPAGT1, E-cadherin adhesion and canonical Wnt signaling. Glycobiology. 2014;24(7):579-91. doi: 10.1093/glycob/cwu031. PubMed PMID: 24742667; PubMed Central PMCID: PMCPMC4038253.
29. Nita-Lazar M, Noonan V, Rebustini I, Walker J, Menko AS, Kukuruzinska MA. Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res. 2009;69(14):5673-80. doi: 10.1158/0008-5472.CAN-08-4512. PubMed PMID: 19549906; PubMed Central PMCID: PMCPMC2771190.
30. Lin WL, Lin YS, Shi GY, Chang CF, Wu HL. Lewisy promotes migration of oral cancer cells by glycosylation of epidermal growth factor receptor. PLoS One. 2015;10(3):e0120162. doi: 10.1371/journal.pone.0120162. PubMed PMID: 25799278; PubMed Central PMCID: PMCPMC4370659.
31. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. Cell surface protein glycosylation in cancer. Proteomics. 2014;14(4-5):525-46. doi: 10.1002/pmic.201300387. PubMed PMID: 24339177.
32. Ma X, Dong W, Su Z, Zhao L, Miao Y, Li N, et al. Functional roles of sialylation in breast cancer progression through miR-26a/26b targeting ST8SIA4. Cell Death Dis. 2016;7(12):e2561. doi: 10.1038/cddis.2016.427. PubMed PMID: 28032858; PubMed Central PMCID: PMCPMC5260976.
33. Fenga X, Zhaoa L, Gao S, Song X, Dong W, Zhao Y, et al. Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4. Gene. 2015;578(2):232-41. doi: https://doi.org/10.1016/j.gene.2015.12.028.
34. Fukasawa T, Asao T, Yamauchi H, Ide M, Tabe Y, Fujii T, et al. Associated expression of alpha2,3sialylated type 2 chain structures with lymph node metastasis in distal colorectal cancer. Surg Today. 2013;43(2):155-62. doi: 10.1007/s00595-012-0141-9. PubMed PMID: 22398718.
35. Holst S, Deuss AJ, van Pelt GW, van Vliet SJ, Garcia-Vallejo JJ, Koeleman CA, et al. N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression. Mol Cell Proteomics. 2016;15(1):124-40. doi: 10.1074/mcp.M115.051235. PubMed PMID: 26537799; PubMed Central PMCID: PMCPMC4762531.
36. Terao N, Takamatsu S, Minehira T, Sobajima T, Nakayama K, Kamada Y, et al. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes. World J Gastroentero. 2015;21(13):3876-87. doi: 10.3748/wjg.v21.i13.3876.
37. Gruszewska E, Chrostek L, Cylwik B, Tobolczyk J, Szmitkowski M, Kuklinski A, et al. Serum sialic acid as a marker of pancreatic cancers. Clin Lab. 2013;59(7-8):781-8. PubMed PMID: 24133906.
38. Shah M, Telang S, Raval G, Shah P, Patel PS. Serum fucosylation changes in oral cancer and oral precancerous conditions: alpha-L-fucosidase as a marker. Cancer. 2008;113(2):336-46. doi: 10.1002/cncr.23556. PubMed PMID: 18521898.
39. Dadhich M, Prabhu V, Pai VR, D'Souza J, Harish S, Jose M. Serum and salivary sialic acid as a biomarker in oral potentially malignant disorders and oral cancer. Indian J Cancer. 2014;51(3):214-8. doi: 10.4103/0019-509X.146720. PubMed PMID: 25494107.
40. Vajaria BN, Patel KR, Begum R, Shah FD, Patel JB, Shukla SN, et al. Evaluation of serum and salivary total sialic acid and alpha-l-fucosidase in patients with oral precancerous conditions and oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(6):764-71. doi: 10.1016/j.oooo.2013.01.004. PubMed PMID: 23570662.
41. Geng F, Shi BZ, Yuan YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res. 2004;14(5):423-33. doi: 10.1038/sj.cr.7290243. PubMed PMID: 15538974.
42. Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, et al. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology. 2014;24(10):935-44. doi: 10.1093/glycob/cwu051.
43. Potapenko IO, Haakensen VD, Luders T, Helland A, Bukholm I, Sorlie T, et al. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol. 2010;4(2):98-118. doi: 10.1016/j.molonc.2009.12.001. PubMed PMID: 20060370.
44. Wang X, Gu J, Ihara H, Miyoshi E, Honke K, Taniguchi N. Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J Biol Chem. 2006;281(5):2572-7. doi: 10.1074/jbc.M510893200. PubMed PMID: 16316986.
45. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH, et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A. 2011;108(28):11332-7. doi: 10.1073/pnas.1107385108. PubMed PMID: 21709263; PubMed Central PMCID: PMCPMC3136320.
46. Sato Y, Nakata K, Kato Y, Shima M, Ishii N, Koji T, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med. 1993;328(25):1802-6. doi: 10.1056/NEJM199306243282502. PubMed PMID: 7684823.
47. Tissot B, North SJ, Ceroni A, Pang PC, Panico M, Rosati F, et al. Glycoproteomics: past, present and future. FEBS Lett. 2009;583(11):1728-35. doi: 10.1016/j.febslet.2009.03.049. PubMed PMID: 19328791; PubMed Central PMCID: PMCPMC2753369.
48. Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol Cell Proteomics. 2011;10(1):R110 003251. doi: 10.1074/mcp.R110.003251. PubMed PMID: 20736408; PubMed Central PMCID: PMCPMC3013464.
49. Tsai HY, Boonyapranai K, Sriyam S, Yu CJ, Wu SW, Khoo KH, et al. Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics. 2011;11(11):2162-70. doi: 10.1002/pmic.201000319. PubMed PMID: 21538882.
50. Li QK, Gabrielson E, Zhang H. Application of glycoproteomics for the discovery of biomarkers in lung cancer. Proteomics Clin Appl. 2012;6(5-6):244-56. doi: 10.1002/prca.201100042. PubMed PMID: 22641610; PubMed Central PMCID: PMCPMC5321538.
51. Pan S, Brentnall TA, Chen R. Glycoproteins and glycoproteomics in pancreatic cancer. World J Gastroenterol. 2016;22(42):9288-99. doi: 10.3748/wjg.v22.i42.9288. PubMed PMID: 27895417; PubMed Central PMCID: PMCPMC5107693.
52. Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, et al. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 2003;13(6):457-70. doi: 10.1093/glycob/cwg041. PubMed PMID: 12626390.
53. Ohyama C, Hosono M, Nitta K, Oh-eda M, Yoshikawa K, Habuchi T, et al. Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology. 2004;14(8):671-9. doi: 10.1093/glycob/cwh071. PubMed PMID: 15044396.
54. Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW. Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res. 2009;8(2):613-9. doi: 10.1021/pr8007539. PubMed PMID: 19035787; PubMed Central PMCID: PMCPMC2997339.
55. Abbott KL, Lim JM, Wells L, Benigno BB, McDonald JF, Pierce M. Identification of candidate biomarkers with cancer-specific glycosylation in the tissue and serum of endometrioid ovarian cancer patients by glycoproteomic analysis. Proteomics. 2010;10(3):470-81. doi: 10.1002/pmic.200900537. PubMed PMID: 19953551; PubMed Central PMCID: PMCPMC4932840.
56. Machado E, Kandzia S, Carilho R, Altevogt P, Conradt HS, Costa J. N-Glycosylation of total cellular glycoproteins from the human ovarian carcinoma SKOV3 cell line and of recombinantly expressed human erythropoietin. Glycobiology. 2011;21(3):376-86. doi: 10.1093/glycob/cwq170. PubMed PMID: 21030537.
57. Alley WR, Jr., Madera M, Mechref Y, Novotny MV. Chip-based reversed-phase liquid chromatography-mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal Chem. 2010;82(12):5095-106. doi: 10.1021/ac100131e. PubMed PMID: 20491449; PubMed Central PMCID: PMCPMC2910595.
58. Abd Hamid UM, Royle L, Saldova R, Radcliffe CM, Harvey DJ, Storr SJ, et al. A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology. 2008;18(12):1105-18. doi: 10.1093/glycob/cwn095. PubMed PMID: 18818422.
59. Abbott KL, Aoki K, Lim JM, Porterfield M, Johnson R, O'Regan RM, et al. Targeted glycoproteomic identification of biomarkers for human breast carcinoma. J Proteome Res. 2008;7(4):1470-80. doi: 10.1021/pr700792g. PubMed PMID: 18271524; PubMed Central PMCID: PMCPMC4932838.
60. Berg JM, Tymoczko JL, Stryer L. Lectins Are Specific Carbohydrate-Binding Proteins. Biochemistry. 5th ed. New York W H Freeman; 2002.
61. Peumans WJ, Van Damme EJM. Lectins as plant defense proteins. Plant Physiology. 1995;109:347-52. doi: 10.1104/pp.109.2.347
62. Schnebli HP, Bachi T. Reaction of lectins with human erythrocytes. I. Factors governing the agglutination reaction. Exp Cell Res. 1975;91(1):175-83. PubMed PMID: 1132415.
63. Gorakshakar AC, Ghosh K. Use of lectins in immunohematology. Asian Journal of Transfusion Science. 2016;10(1):12-21. doi: 10.4103/0973-6247.172180.
64. Matsumura K, Higashida K, Ishida H, Hata Y, Yamamoto K, Shigeta M, et al. Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J Biol Chem. 2007;282(21):15700-8. doi: 10.1074/jbc.M701195200. PubMed PMID: 17383961.
65. Ruiz-May E, Catala C, Rose JK. N-glycoprotein enrichment by lectin affinity chromatography. Methods Mol Biol. 2014;1072:633-43. doi: 10.1007/978-1-62703-631-3_43. PubMed PMID: 24136552.
66. Pohleven J, Štrukelj B, Kos J. Affinity Chromatography of Lectins,. In: Magdeldin S, editor. Affinity Chromatography: InTech; 2012.
67. Ambrose SR, Gordon NS, Goldsmith JC, Wei W, Zeegers MP, James ND, et al. Use of Aleuria alantia Lectin Affinity Chromatography to Enrich Candidate Biomarkers from the Urine of Patients with Bladder Cancer. Proteomes. 2015;3(3):266-82. doi: 10.3390/proteomes3030266. PubMed PMID: 28248271; PubMed Central PMCID: PMCPMC5217382.
68. Drake PM, Schilling B, Niles RK, Prakobphol A, Li B, Jung K, et al. Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J Proteome Res. 2012;11(4):2508-20. doi: 10.1021/pr201206w. PubMed PMID: 22309216; PubMed Central PMCID: PMCPMC3383053.
69. Fang CY, Shen CH, Wang M, Chen PL, Chan MW, Hsu PH, et al. Global profiling of histone modifications in the polyomavirus BK virion minichromosome. Virology. 2015;483:1-12. doi: 10.1016/j.virol.2015.04.009. PubMed PMID: 25958155.
70. Senra Varela A, Lopez Saez JJ, Quintela Senra D. Serum ceruloplasmin as a diagnostic marker of cancer. Cancer Letters. 1997;121(2):139-45.
71. O'Donnell LC, Druhan LJ, Avalos BR. Molecular characterization and expression analysis of leucine-rich alpha2-glycoprotein, a novel marker of granulocytic differentiation. J Leukoc Biol. 2002;72(3):478-85. PubMed PMID: 12223515.
72. Saito K, Tanaka T, Kanda H, Ebisuno Y, Izawa D, Kawamoto S, et al. Gene expression profiling of mucosal addressin cell adhesion molecule-1+ high endothelial venule cells (HEV) and identification of a leucine-rich HEV glycoprotein as a HEV marker. J Immunol. 2002;168(3):1050-9. PubMed PMID: 11801638.
73. Wang X, Abraham S, McKenzie JA, Jeffs N, Swire M, Tripathi VB, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-beta signalling. Nature. 2013;499(7458):306-11. doi: 10.1038/nature12345. PubMed PMID: 23868260; PubMed Central PMCID: PMCPMC3836402.
74. Ishikawa S, Sugimoto M, Kitabatake K, Sugano A, Nakamura M, Kaneko M, et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci Rep. 2016;6:31520. doi: 10.1038/srep31520. PubMed PMID: 27539254; PubMed Central PMCID: PMCPMC4990923.
75. Kademani D, Lewis JT, Lamb DH, Rallis DJ, Harrington JR. Angiogenesis and CD34 expression as a predictor of recurrence in oral squamous cell carcinoma. J Oral Maxillofac Surg. 2009;67(9):1800-5. doi: 10.1016/j.joms.2008.06.081. PubMed PMID: 19686913.
76. Shao K, Chen ZY, Gautam S, Deng NH, Zhou Y, Wu XZ. Posttranslational modification of E-cadherin by core fucosylation regulates Src activation and induces epithelial-mesenchymal transition-like process in lung cancer cells. Glycobiology. 2016;26(2):142-54. doi: 10.1093/glycob/cwv089. PubMed PMID: 26443198.
77. Zhao YP, Xu XY, Fang M, Wang H, You Q, Yi CH, et al. Decreased core-fucosylation contributes to malignancy in gastric cancer. PLoS One. 2014;9(4):e94536. doi: 10.1371/journal.pone.0094536. PubMed PMID: 24732908; PubMed Central PMCID: PMCPMC3986093.
78. Chen YT, Chong YM, Cheng CW, Ho CL, Tsai HW, Kasten FH, et al. Identification of novel tumor markers for oral squamous cell carcinoma using glycoproteomic analysis. Clin Chim Acta. 2013;420:45-53. doi: 10.1016/j.cca.2012.10.019. PubMed PMID: 23078850.
79. Guu SY, Lin TH, Chang SC, Wang RJ, Hung LY, Fang PJ, et al. Serum N-glycome characterization and anti-carbohydrate antibody profiling in oral squamous cell carcinoma patients. PLoS One. 2017;12(6):e0178927. doi: 10.1371/journal.pone.0178927. PubMed PMID: 28594851.
80. Dieplinger H, Ankerst DP, Burges A, Lenhard M, Lingenhel A, Fineder L, et al. Afamin and Apo A-IV: Novel Protein Markers for Ovarian Cancer. Cancer Epidem Biomar. 2009;18(4):1127-33. doi: 10.1158/1055-9965.Epi-08-0653. PubMed PMID: WOS:000265125000014.
81. Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apo A-IV: a protein intimately involved in metabolism. J Lipid Res. 2015;56(8):1403-18. doi: 10.1194/jlr.R052753. PubMed PMID: 25640749; PubMed Central PMCID: PMCPMC4513983.
82. Lefevre M, Lovejoy JC, DeFelice SM, Keener JW, Bray GA, Ryan DH, et al. Common apo A-IV variants are associated with differences in body mass index levels and percentage body fat. Int J Obes Relat Metab Disord. 2000;24(8):945-53. PubMed PMID: 10951531.
83. Zhang J, Zhu L, Fang J, Ge Z, Li X. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1alpha activation. J Exp Clin Cancer Res. 2016;35:29. doi: 10.1186/s13046-016-0306-2. PubMed PMID: 26856989; PubMed Central PMCID: PMCPMC4746930.
84. Zhou Y, Zhang X, Zhang J, Fang J, Ge Z, Li X. LRG1 promotes proliferation and inhibits apoptosis in colorectal cancer cells via RUNX1 activation. PLoS One. 2017;12(4):e0175122. doi: 10.1371/journal.pone.0175122. PubMed PMID: 28376129; PubMed Central PMCID: PMCPMC5380360.
85. Asazawa H, Kamada Y, Takeda Y, Takamatsu S, Shinzaki S, Kim Y, et al. Serum fucosylated haptoglobin in chronic liver diseases as a potential biomarker of hepatocellular carcinoma development. Clin Chem Lab Med. 2015;53(1):95-102. doi: 10.1515/cclm-2014-0427. PubMed PMID: 25060348.
86. Druhan LJ, Lance A, Li S, Price AE, Emerson JT, Baxter SA, et al. Leucine Rich alpha-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS One. 2017;12(1):e0170261. doi: 10.1371/journal.pone.0170261. PubMed PMID: 28081565; PubMed Central PMCID: PMCPMC5233425.
87. Ma S, Wang W, Xia B, Zhang S, Yuan H, Jiang H, et al. Multiplexed Serum Biomarkers for the Detection of Lung Cancer. EBioMedicine. 2016;11:210-8. doi: 10.1016/j.ebiom.2016.08.018. PubMed PMID: 27575387; PubMed Central PMCID: PMCPMC5049985.
88. Shimwell NJ, Wei W, Wilson S, Wakelam MJ, Ismail T, Iqbal T, et al. Assessment of novel combinations of biomarkers for the detection of colorectal cancer. Cancer Biomark. 2010;7(3):123-32. doi: 10.3233/CBM-2010-0155. PubMed PMID: 21263188.
89. Simmons AR, Clarke CH, Badgwell DB, Lu Z, Sokoll LJ, Lu KH, et al. Validation of a Biomarker Panel and Longitudinal Biomarker Performance for Early Detection of Ovarian Cancer. Int J Gynecol Cancer. 2016;26(6):1070-7. doi: 10.1097/IGC.0000000000000737. PubMed PMID: 27206285; PubMed Central PMCID: PMCPMC4915986.
90. Lin Z, Lo A, Simeone DM, Ruffin MT, Lubman DM. An N-glycosylation Analysis of Human Alpha-2-Macroglobulin Using an Integrated Approach. J Proteomics Bioinform. 2012;5:127-34. doi: 10.4172/jpb.1000224. PubMed PMID: 23028207; PubMed Central PMCID: PMCPMC3460646.
91. Harazono A, Kawasaki N, Itoh S, Hashii N, Ishii-Watabe A, Kawanishi T, et al. Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Biochem. 2006;348(2):259-68. doi: 10.1016/j.ab.2005.10.036. PubMed PMID: 16321355.
92. Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A, Wuhrer M. Human plasma protein N-glycosylation. Glycoconj J. 2016;33(3):309-43. doi: 10.1007/s10719-015-9626-2. PubMed PMID: 26555091; PubMed Central PMCID: PMCPMC4891372.
93. Okuyama N, Ide Y, Nakano M, Nakagawa T, Yamanaka K, Moriwaki K, et al. Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. International Journal of Cancer. 2006;118(11):2803-8. doi: 10.1002/ijc.21728
94. Miyoshi E, Nakano M. Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. . Proteomics. 2008;8(16):3257-62.
95. Kontro H, Joenvaara S, Haglund C, Renkonen R. Comparison of sialylated N-glycopeptide levels in serum of pancreatic cancer patients, acute pancreatitis patients, and healthy controls. Proteomics. 2014;14(15):1713-23. doi: 10.1002/pmic.201300270. PubMed PMID: 24841998.
96. Lai CH, Chang NW, Lin CF, Lin CD, Lin YJ, Wan L, et al. Proteomics-based identification of haptoglobin as a novel plasma biomarker in oral squamous cell carcinoma. Clin Chim Acta. 2010;411(13-14):984-91. doi: 10.1016/j.cca.2010.03.028. PubMed PMID: WOS:000278747300011.
97. Yin H, Lin Z, Nie S, Wu J, Tan Z, Zhu J, et al. Mass-selected site-specific core-fucosylation of ceruloplasmin in alcohol-related hepatocellular carcinoma. J Proteome Res. 2014;13(6):2887-96. doi: 10.1021/pr500043k. PubMed PMID: 24799124; PubMed Central PMCID: PMCPMC4059274.
98. Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J Proteome Res. 2006;5(2):308-15. doi: 10.1021/pr050328x. PubMed PMID: 16457596.
99. Balmana M, Sarrats A, Llop E, Barrabes S, Saldova R, Ferri MJ, et al. Identification of potential pancreatic cancer serum markers: Increased sialyl-Lewis X on ceruloplasmin. Clin Chim Acta. 2015;442:56-62. doi: 10.1016/j.cca.2015.01.007. PubMed PMID: 25595436.
100. Kakisaka T, Kondo T, Okano T, Fujii K, Honda K, Endo M, et al. Plasma proteomics of pancreatic cancer patients by multi-dimensional liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE): up-regulation of leucine-rich alpha-2-glycoprotein in pancreatic cancer. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852(1-2):257-67. doi: 10.1016/j.jchromb.2007.01.029. PubMed PMID: 17303479.
101. Andersen JD, Boylan KLM, Jemmerson R, Geller MA, Misemer B, Harrington KM, et al. Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res. 2010;3. doi: Artn 2110.1186/1757-2215-3-21. PubMed PMID: WOS:000295362100001.
102. Comunale MA, Wang MJ, Hafner J, Krakover J, Rodemich L, Kopenhaver B, et al. Identification and Development of Fucosylated Glycoproteins as Biomarkers of Primary Hepatocellular Carcinoma. Journal of Proteome Research. 2009;8(2):595-602. doi: 10.1021/pr800752c. PubMed PMID: WOS:000263193300019.
103. Debruyne EN, Vanderschaeghe D, Van Vlierberghe H, Vanhecke A, Callewaert N, Delanghe JR. Diagnostic Value of the Hemopexin N-Glycan Profile in Hepatocellular Carcinoma Patients. Clin Chem. 2010;56(5):823-31. doi: 10.1373/clinchem.2009.139295. PubMed PMID: WOS:000277160800025.
104. Li CY, Li HJ, Zhang T, Li JM, Liu LL, Chang JW. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis. Biochem Bioph Res Co. 2014;446(4):1047-52. doi: 10.1016/j.bbrc.2014.03.053. PubMed PMID: WOS:000335367900038.
105. Li HJ, Li CY, Wu HL, Zhang T, Wang J, Wang SX, et al. Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma. Proteome Sci. 2011;9. doi: Artn 2110.1186/1477-5956-9-21. PubMed PMID: WOS:000290321900001.
106. Ho AS, Cheng CC, Lee SC, Liu ML, Lee JY, Wang WM, et al. Novel biomarkers predict liver fibrosis in hepatitis C patients: alpha 2 macroglobulin, vitamin D binding protein and apolipoprotein AI. J Biomed Sci. 2010;17. doi: Artn 5810.1186/1423-0127-17-58. PubMed PMID: WOS:000282336300001.
107. Honda K, Kobayashi M, Okusaka T, Nakamori S, Shimahara M, Ueno T, et al. Plasma biomarker for detection of early stage pancreatic cancer and risk factors for pancreatic malignancy using antibodies against apolipoprotein-AII isoforms. Eur J Cancer. 2015;51:S81-S. PubMed PMID: WOS:000361887400250.
108. Dubois V, Delort L, Mishellany F, Jarde T, Billard H, Lequeux C, et al. Zinc-alpha2-glycoprotein: a new biomarker of breast cancer? Anticancer Res. 2010;30(7):2919-25. PubMed PMID: 20683033.
109. Wang F, Geng Y, Zhang WM, Geng X. Identification of ZAG Protein as a Novel Serologic Biomarker Candidate for Liver Cancer. Advanced Materials Research. 2012;340:383-9. doi: 10.4028/www.scientific.net/AMR.340.383
110. Gray J, Chattopadhyay D, Beale GS, Patman GL, Miele L, King BP, et al. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease. Bmc Cancer. 2009;9. doi: Artn 27110.1186/1471-2407-9-271. PubMed PMID: WOS:000269447300003.
111. Sarvari J, Mojtahedi Z, Taghavi SAR, Kuramitsu Y, Shahrabadi MS, Ghaderi A, et al. Differentially Expressed Proteins in Chronic Active Hepatitis, Cirrhosis, and HCC Related to HCV Infection in Comparison With HBV Infection: A proteomics study. Hepat Mon. 2013;13(7). doi: UNSP e835110.5812/hepatmon.8351. PubMed PMID: WOS:000328508100007.
112. Kanoh Y, Ohtani N, Mashiko T, Ohtani S, Nishikawa T, Egawa S, et al. Levels of alpha 2 macroglobulin can predict bone metastases in prostate cancer. Anticancer Research. 2001;21(1B):551-6.
113. Lee YJ, Kang SW, Song JK, Park JJ, Bae YD, Lee E, et al. Serum galectin-3 and galectin-3 binding protein levels in Behcet's disease and their association with disease activity. Clin Exp Rheumatol. 2007;25(4):S41-S5. PubMed PMID: WOS:000252147400009.
114. Lin TW, Chang HT, Chen CH, Chen CH, Lin SW, Hsu TL, et al. Galectin-3 Binding Protein and Galectin-1 Interaction in Breast Cancer Cell Aggregation and Metastasis. J Am Chem Soc. 2015;137(30):9685-93. doi: 10.1021/jacs.5b04744. PubMed PMID: WOS:000359279500032.
115. Imre T, Kremmer T, Heberger K, Molnar-Szollosi E, Ludanyi K, Pocsfalvi G, et al. Mass spectrometric and linear discriminant analysis of N-glycans of human serum alpha-1-acid glycoprotein in cancer patients and healthy individuals. J Proteomics. 2008;71(2):186-97. doi: 10.1016/j.jprot.2008.04.OOS. PubMed PMID: WOS:000260816400006.
116. Ayyub A, Saleem M, Fatima I, Tariq A, Hashmi N, Musharraf SG. Glycosylated Alpha-1-acid glycoprotein 1 as a potential lung cancer serum biomarker. Int J Biochem Cell B. 2016;70:68-75. doi: 10.1016/j.biocel.2015.11.006. PubMed PMID: WOS:000368869500008.
117. Bachtiar I, Kheng V, Wibowo GA, Gani RA, Hasan I, Sanityoso A, et al. Alpha-1-acid glycoprotein as potential biomarker for alpha-fetoprotein-low hepatocellular carcinoma. . BMC Research Notes. 2010;3:319. doi: 10.1186/1756-0500-3-319.
118. Yi JK, Chang JW, Han W, Lee JW, Ko E, Kim DH, et al. Autoantibody to Tumor Antigen, Alpha 2-HS Glycoprotein: A Novel Biomarker of Breast Cancer Screening and Diagnosis. Cancer Epidem Biomar. 2009;18(5):1357-64. doi: 10.1158/1055-9965.Epi-08-0696. PubMed PMID: WOS:000266081500004.
119. Tian WD, Li JZ, Hu SW, Peng XW, Li G, Liu X, et al. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell carcinoma. Int J Clin Exp Patho. 2015;8(8):9021-31. PubMed PMID: WOS:000364775400031.
120. Fan Y, Shi L, Liu Q, Dong R, Zhang Q, Yang S, et al. Discovery and identification of potential biomarkers of papillary thyroid carcinoma. Mol Cancer. 2009;8:79. doi: 10.1186/1476-4598-8-79. PubMed PMID: 19785722; PubMed Central PMCID: PMCPMC2761863.
121. Song D, Yue L, Li H, Zhang J, Yan Z, Fan Y, et al. Diagnostic and prognostic role of serum protein peak at 6449 m/z in gastric adenocarcinoma based on mass spectrometry. Br J Cancer. 2016;114(8):929-38. doi: 10.1038/bjc.2016.52. PubMed PMID: 27002935; PubMed Central PMCID: PMCPMC4984799.
校內:2022-07-25公開