簡易檢索 / 詳目顯示

研究生: 蔡治廷
Tsai, Zhi-Ting
論文名稱: 使用斬波技術的電阻式鎖頻晶片化振盪器
A Resistive Frequency Locked On-Chip Oscillator with Chopper-Stabilization Techniques
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 106
中文關鍵詞: 鬆弛振盪器電阻式鎖頻迴路斬波器高長期穩定性低溫度係數低線性靈敏度
外文關鍵詞: Relaxation oscillator, Resistive frequency-locked loop, Chopper, High long-term stability, Low temperature coefficient, Low line sensitivity
相關次數: 點閱:140下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現電阻式鎖頻迴路的架構,能夠打破傳統鬆弛振盪器之中溫度變異性與功耗之間的權衡關係,使得達到溫度穩定的同時也不失有非常好的能源效率。在參考電流源以及偏移電壓的斬波器的同時操作於不同頻率之下,能夠避免影響到切換電容等效電阻的精確性且有效的消除非理想效應帶來的溫度變異的問題,並且消去了存在於電路中由電晶體貢獻的低頻率閃爍噪音,因此達到了更好的長期頻率穩定性,且在不同斬波器開啟的模式下,相較於只使用一種斬波器,有著接近十倍的改善;相較於不使用斬波器的模式下,有著十六倍的改善。本篇作品使用台積電180 nm的互補式金屬氧化物半導體製程,達到每攝氏溫度百萬分之30.1的溫度係數並伴有百萬分之2.73 (在18秒的積分時間後) 的長期穩定性,在室溫下能夠輸出200千赫茲而只需要消耗293毫微瓦,相當於每千赫茲1.47毫微瓦的電源效率。此作品能夠操作在很寬的供應電壓從0.9伏特到1.8伏特而能夠達到每電壓百分之0.64的線性靈敏度。在第一優值中能夠達到 94.14 dB,而第二優值則能達到89.78 dB。

    This work presents an on-chip oscillator with resistive frequency locked loop and chopper stabilization techniques. It can break down the trade-off relationships between power consumption and temperature coefficient (TC) unlike the conventional relaxation oscillator. Accordingly, resistive frequency locked oscillator (RFLO) can reach a stable TC without losing the energy efficiency. With the current-chopper and the offset-chopper operating at different frequencies simultaneously, this avoids interfering with the accuracy of the equivalent resistance of the switched capacitor and effectively eliminates the TC issues from the non-idealities. Besides, it mitigates the low-frequency flicker noise due to the transistors, making the better long-term stability. It improves nearly ×10 of long-term stability compared with the modes with only one chopper turned on, and ×16 of long-term stability compared with the mode with no choppers turned on.
    This work is fabricated by TSMC 180-nm CMOS process. It approach a 30.1 ppm/℃ of TC with 2.73 ppm (after 18s integration time) of long-term stability. It can generate the output frequency of 200 kHz while consuming only 293 nW, the energy efficiency of 1.47 nW/kHz. It can operate under a wide-range of supply voltage from 0.9 V to 1.8 V and achieve 0.64 %/V of line sensitivity. It can reach 94.14 dB of FoM1, and 89.78 dB of FoM2.

    List of Tables VIII List of Figure IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Design Metrics of On-Chip Oscillators 3 1.2.1 Energy per Cycle 3 1.2.2 Temperature Coefficient 4 1.2.3 Line Sensitivity 5 1.2.4 Allan Deviation 5 1.2.5 Figures of merit (FoM) 6 1.3 Thesis Overview 7 Chapter 2 Literature Review of On-Chip Oscillators 8 2.1 Relaxation Oscillators 8 2.1.1 Conventional RC Relaxation Oscillators 8 2.1.2 Prior art of the RC Relaxation Oscillators 10 2.1.2.1 Offset Cancellation Method 10 2.1.2.2 Low Power Design 13 2.1.2.3 System-Level Improvement 16 2.2 Resistive Frequency-Locked Oscillators (RFLOs) 20 2.3 Leakage-Based Oscillators 25 2.4 Summary 25 Chapter 3 Proposed On-Chip Oscillator 27 3.1 Abstract 27 3.2 Key Problems of RFLO 28 3.2.1 Current Mismatch Variation across Temperature Analysis 28 3.2.2 Input-Offset of Amplifier Variation across Temperature Analysis 31 3.2.3 Leakage Current of Switches Variation across Temperature Analysis 35 3.2.4 Summary 38 3.3 Technique Utilized in Proposed RFLO 38 3.3.1 Current-Chopping Technique 38 3.3.2 Offset-Chopping Technique 41 3.3.3 Chopping Frequency Arrangement 44 3.4 The Proposed Architecture of RFLO 50 3.5 Building Blocks of Proposed RFLO 51 3.5.1 Close-Loop Transfer Function 52 3.5.2 Reference Resistive Array 55 3.5.3 Chopped Folded-Cascode Amplifier 66 3.5.4 Ring Oscillators 71 3.5.5 Bias Circuit 75 3.5.6 Clock Generation of RFLO 76 3.6 Simulation Results of System 79 3.6.1 Tracking waveforms of RFLO 79 3.6.2 Line Sensitivity 80 3.6.3 TC of RFLO 81 3.6.4 Frequency Range of RFLO 82 3.6.5 Pre-Layout Simulation and Post-Layout Simulation Summary 83 Chapter 4 Test Setup and Measurement Results 85 4.1 Test Setups and Measurement Results 85 4.1.1 Measurement Results of Temperature Coefficient 88 4.1.2 Measurement Results of Line Sensitivity 93 4.1.3 Measurement Results of Allan Deviation 93 4.2 Start-up Response 95 4.3 Comparison Table 97 Chapter 5 Conclusion and Future Work 99 5.1 Conclusion 99 5.2 Future Work 99 5.2.1 Area Optimization 99 5.2.2 Analysis and Designed of Resistor Array 100 Bibliography 104

    [1] Ericsson, “Internet of Things forecast – Ericsson,” Internet of Things forecast, 2016. [Online]. Available: https://www.ericsson.com/mobility-report/internet-of-things-forecast.
    [2] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, “Smart Dust: Communicating with a Cubic-Millimeter Computer,” Computer, vol. 34. pp. 44–51, 2001.
    [3] Y. Lee et al., “A Modular 1 mm3 Die-Stacked Sensing Platform with Low Power I2C Inter-Die Communication and Multi-Modal Energy Harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 229–243, 2013.
    [4] H. Reinisch et al., “An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1728–1741, 2011.
    [5] K. J. Hsiao, “A 1.89nW/0.15V self-charged XO for real-time clock generation,” in IEEE ISSCC Dig. Tech. Papers, 2014, vol. 57, pp. 298–299.
    [6] M. Choi, T. Jang, S. Bang, Y. Shi, D. Blaauw, and D. Sylvester, “A 110 nW resistive frequency locked on-chip oscillator with 34.3 ppm/°C temperature stability for system-on-chip designs,” IEEE J. Solid-State Circuits, vol. 51, no. 9, pp. 2106–2118, 2016.
    [7] IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology–Random Instabilities. 1999.
    [8] Analyzing Frequency Stability in the Frequency and Time Domains, Keysight Technologies. 2014.
    [9] D. Griffith, P. T. Røine, J. Murdock, and R. Smith, “A 190nW 33kHz RC oscillator with ±0.21% temperature stability and 4ppm long-term stability,” in IEEE ISSCC Dig. Tech. Papers, 2014, vol. 57, pp. 300–301.
    [10] S. Dai and J. K. Rosenstein, “A 14.4nW 122KHz dual-phase current-mode relaxation oscillator for near-zero-power sensors,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), 2015, pp. 1–4.
    [11] Y. H. Chiang and S. I. Liu, “Nanopower CMOS relaxation oscillators with sub-100ppm/° temperature coefficient,” IEEE Trans. Circuits Syst. II, vol. 61, no. 9, pp. 661–665, 2014.
    [12] T. Tokairin et al., “A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feedforward period control scheme,” in IEEE Symp. VLSI Circuits, Dig., 2012, pp. 16–17.
    [13] K. J. Hsiao, “A 32.4 ppm/°C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation,” in IEEE Symp. VLSI Circuits, Dig., 2012, pp. 14–15.
    [14] A. Paidimarri, D. Griffith, A. Wang, G. Burra, and A. P. Chandrakasan, “An RC Oscillator with Comparator Offset Cancellation,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1866–1877, 2016.
    [15] J. Lee, P. Park, S. Cho, and M. Je, “A 4.7MHz 53μW fully differential CMOS reference clock oscillator with -22dB worst-case PSNR for miniaturized SoCs,” in IEEE ISSCC Dig. Tech. Papers, 2015, vol. 58, pp. 106–107.
    [16] A. Paidimarri, D. Griffith, A. Wang, A. P. Chandrakasan, and G. Burra, “A 120nW 18.5kHz RC oscillator with comparator offset cancellation for ±0.25% temperature stability,” in IEEE ISSCC Dig. Tech. Papers, 2013, vol. 56, pp. 184–185.
    [17] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150–1158, 2010.
    [18] Y. Tokunaga, S. Sakiyama, and S. Dosho, “An over 20,000 quality factor on-chip relaxation oscillator using Power Averaging Feedback with a Chopped Amplifier,” in IEEE Symp. VLSI Circuits, Dig., 2010, pp. 111–112.
    [19] H. Jiang, P. H. P. Wang, P. P. Mercier, and D. A. Hall, “A 0.4-V 0.93-nW/kHz Relaxation Oscillator Exploiting Comparator Temperature-Dependent Delay to Achieve 94-ppm/°C Stability,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 3004–3011, 2018.
    [20] S. Jeong, I. Lee, D. Blaauw, and D. Sylvester, “A 5.8 nW CMOS Wake-Up Timer for Ultra-Low-Power Wireless Applications,” IEEE J. Solid-State Circuits, vol. 50, no. 8, pp. 1754–1763, 2015.
    [21] B. R. Gregoire and U. K. Moor, “A sub 1-V constant Gm-C switched-capacitor current source,” IEEE Trans. Circuits Syst. II, vol. 54, no. 3, pp. 222–226, 2007.
    [22] M. Choi, S. Bang, T. K. Jang, D. Blaauw, and D. Sylvester, “A 99nW 70.4kHz resistive frequency locking on-chip oscillator with 27.4ppm/°C temperature stability,” in IEEE Symp. VLSI Circuits, Dig., 2015, pp. C238–C239.
    [23] T. Jang, M. Choi, S. Jeong, S. Bang, D. Sylvester, and D. Blaauw, “A 4.7nW 13.8ppm/°C self-biased wakeup timer using a switched-resistor scheme,” in IEEE ISSCC Dig. Tech. Papers, 2016, vol. 59, pp. 102–103.
    [24] Y. Lee, B. Giridhar, Z. Foo, D. Sylvester, and D. B. Blaauw, “A sub-nw multi-stage temperature compensated timer for ultra-low-power sensor nodes,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2511–2521, 2013.
    [25] 53230A 350 MHz Universal Frequency Counter/Timer, 12 Digits/s, 20 ps, Keysight Technologies. 2015.
    [26] J. Lee, A. George, and M. Je, “A 1.4V 10.5MHz swing-boosted differential relaxation oscillator with 162.1dBc/Hz FOM and 9.86psrms period jitter in 0.18µm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2016, vol. 59, pp. 106–108.

    下載圖示 校內:2024-07-23公開
    校外:2024-07-23公開
    QR CODE