| 研究生: |
徐穎淳 Syu, Ying-Chun |
|---|---|
| 論文名稱: |
風帆輔助船舶航行之自動操控研究 The Study of the Automatic Control on a Sail-assisted Ship |
| 指導教授: |
方銘川
Fang, Ming-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 風帆助航 、綠能船舶 、空氣動力 、航向控制 |
| 外文關鍵詞: | sail-assisted, energy-saving ships, aerodynamics, ship steering control |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要模擬風帆輔助船舶在航行狀況下,評估同時對風帆及舵作自動控制之船體反應及節能效果。本文中利用瞄準線方式找出欲保持航向,使用PD控制器控制舵角以維持目標航向,並根據欲使用風帆之空氣動力性能曲線找出理想之轉帆角以得最大推力或最小阻力。時程領域之運動反應則以四階之數值方法求解。其中相對風速對推力的影響最為顯著。本文所建立之數學模式對於初步設計風帆之自動控制系統及未來風能利用之技術發展都有相當大的助益。
In this study, simulation of a sail-assisted vessel’s ship dynamic responses under service conditions is investigated. Energy-saving effect based on automatic control was also assessed. The line-of-sight method is used to decide the desired heading angle and then a PD controller is used to manipulate rudder angle in order to maintain the target course. Furthermore, the way of deciding the ideal sail turning angle based on the aerodynamic characteristics curve is established to get the maximum thrust or minimum resistance. Ship motions were computed by the fourth Runge-Kutta method. The relative velocity has a significant effect on the thrust. Mathematical model established in this study is useful for the preliminary design of the automatic control system of sails on a ship and it’s also helpful to the future development of wind energy.
[1] Kanai, A., Uzawa, K., and Ouchi, K., “Performance Prediction of Large Sailing Vessel with Multiple Wing Sails by CFD Wind Tunnel Test and EPP,” Conference Proceedings of JASNAOE, 2011.
[2] Anto´ nio F. de O. Falca˜o, “Wave energy utilization: A review of the technologies,” Renewable and Sustainable Energy Reviews 14, pp.899–918, 2010.
[3] Brooks, R.R., Iyengar, S.S., and Chen, J., “Automatic correlation and calibration of noisy sensor readings using elite genetic algorithms,” Artificial Intelligence, Vol. 84, pp. 339-354, 1996.
[4] Cao, Y. and Lee, T.H., “Maneuvering of surface vessels using a fuzzy logic controller,” Journal of Ship Research, Vol. 47, No. 2, pp. 101-130, 2003.
[5] Fang, M.C., Lee, M.L. and Lee, C.K., “The simulation of water shipping for a ship advancing in large longitudinal waves,” Journal of Ship Research, Vol. 37, pp. 26-137, 1993.
[6] Fujiwara, T., Hirata, K., and Ueno, M., and Nimura, T., "On aerodynamic characteristics of a hybrid-sail with square soft sail." Proceedings of the International Society of Offshore and Polar Engineering, ISOPE2003, Hawaii 326-333, 2003)
[7] Fujiwara, T., Hearn, G.E., and Kitamura, F., and Ueno, M., “Sail–sail and sail–hull interaction effects of hybrid-sail assisted bulk carrier,” Journal of marine science and technology 10.2, pp. 82-95, 2005.
[8] Hamada, N., “The development in Japan of modern sail-assisted ships for energy conservation,” Regional Conference on Sail-Motor Propulsion, 1900.
[9] Hamamoto, M. and Kim, Y.S., “A new coordinate system and the equations describing maneuvering motion of a ship in waves (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 173, pp. 209-220, 1993.
[10] Hamamoto, M., Matsuda, A., and Ise, Y., “Ship motion and the dangerous zone of a ship in severe following seas (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 175, pp. 69-78, 1994.
[11] Hirano, M., “On the calculation method of ship maneuvering motion at initial design phase (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 147, pp. 144-153, 1980.
[12] Hirano, M. and Takashina, J., “A calculation of ship turning motion taking coupling effect due to heel into consideration,” Transaction of the West-Japan Society of Naval Architects, Vol. 59, pp. 71-81, 1980.
[13] Inoue, S., Hirano, M. and Kijima, K., “Hydrodynamic derivatives on ship maneuvering,” International Shipbuilding Progress, Vol. 28, pp. 112-125, 1981.
[14] Inoue, S., Hirano, M., Kijima, K., and Takashina, J., “A practical calculation method of ship maneuvering motion,” International Shipbuilding Progress, Vol. 28, pp. 207-222, 1981.
[15] Isherwood, R.M., “Wind Resistance of Merchant Ships,” Transactions of RINA, Vol. 115, pp. 327-338, 1973.
[16] Abril, J., Salom, J., and Calvo, O., “Fuzzy control of a sailboat,” International Journal of Approximate Reasoning, Volume 16, Issues 3–4, pp. 359-375, 1997.
[17] Kazuyuki, O., Kiyoshi, U., Akihiro, K., and Masanobu, K., “”Wind Challenger Project” The Next Generation Sailing Vessel,” Proceedings of 5th PAAMES and AMEC, Paper No. NSC-06, 2012.
[18] McGookin, E.W., Murray-Smith, D.J., Li, Y., and Fossen, T.I., “Ship steering control system optimization using genetic algorithms,” Control Engineering Practice, Vol. 8, No. 4, pp. 429-443, 2000.
[19] Murata, M., Tsuji, M., and Watanabe, T., “Aerodynamic characteristics of 1600 DWT sail-assisted tanker,” North East Coast Institution of Engineers & shipbuilders Transactions, 1982.
[20] Nuttall, P., Newell, A., Prasad, B., Veitayaki, J., and Holland, E., “A review of sustainable sea-transport for Oceania: Providing context for renewable energy shipping for the Pacific,” Marine Policy, Volume 43, pp. 283-287, 2014
[21] Stelzer, R., and Pröll, T., “Autonomous sailboat navigation for short course racing, ” Robotics and Autonomous Systems, Volume 56, Issue 7, 31, pp. 604-614, 2008.
[22] Schenzle, P. "Estimation of wind assistance potential." Journal of wind engineering and industrial aerodynamics , Volume 20, Issues 1–3, pp.97-110, 1985.
[23] Viola, I., and Fossatti, F., “Downwind sails aerodynamic analysis.,” BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications, Milano, Italy, 2008.
[24] Wagner, B., “Wind tunnel tests of a six-masted sailing vessel of Prolss design,” Institute of Ship building of the University of Hamburg, 1967.
[25] Yeh, E., “Fuzzy Control For Self-steering Of A Sailboat,” Proceedings of the International Conference on Intelligent Control and Instrumentation, Singapore, 1992.
[26] Yoshimura, Y. and Nomoto, K., “Modeling of manoeuvring behavior of ships with a propeller idling, boosting and reversing (in Japanese),” Journal of the Society of Naval Architects of Japan, Vol. 144, pp. 57-69, 1978.
[27] 高品純志,港灣域における船の操縱運動計算法に關する研究(日文),博士論文,東京大學,日本,1992。
[28] 柏開祥,帆船VPP與最佳航線研究模型的建立與實現, 武漢理工大學學報第31卷第四期, pp.660-663, 2007.
[29] 徐玉樹,順浪中船舶之穩度安全性,國立成功大學造船暨船舶機械工程研究所碩士論文,民國八十六年。
[30] 關西造船協會,造船設計便覽(日文),海文堂出版株式會社,東京,1983。
[31] 羅志宏,船隻在順波中航向穩定性與運動之分析,國立成功大學造船暨船舶機械工程研究所碩士論文,民國九十年。
[32] 羅志宏,船舶在波浪中之非線性運動操控模式之探討,國立成功大學造船暨船舶機械工程研究所博士論文,民國九十五年。
[33] 葛豔,孟慶春,魏振剛,竇金鳳,& 張文,基於 Sugeno 模糊模型的帆船控制方法研究,控制與決策,19(6),pp. 659-662, 2004
校內:2016-02-12公開