研究生: |
謝易達 Hsieh, Yi-Ta |
---|---|
論文名稱: |
奈米壓印與金屬轉印技術應用於提升發光二極體發光效率 Nanoimprint and metal contact printing Technology for Enhancing Light Extraction of LED’s Efficiency |
指導教授: |
李永春
Lee, Yung-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 聚二甲基矽氧烷 、金屬轉印 、發光二極體 、圖形化藍寶石基板 |
外文關鍵詞: | PDM, Metal contact transfer technology, Light emitting diode, Pattern sapphire substrate |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文成功地發展一套新穎的奈米壓印金屬轉印製程技術,應用於圖形化的發光二極體結構,以得到較高的發光效能。實驗中採用PDMS (聚二甲基矽氧烷) 軟性模取代傳統的矽基模仁,藉由軟接觸的方式減少小顆粒對壓印的影響,以增加轉印的良率。本論文並使用金屬轉印製程,將模仁上的金屬圖形直接轉印在藍寶石基板與紅光發光二極體表面,轉印後的金屬層可直接做為後續蝕刻製程所需的遮罩,且藉由金屬的高蝕刻選擇比,可在藍寶石基板上製作出高深寬比的結構。此外,金屬轉印技術可輕易的製作出奈米或是次微米尺度的結構;目前本文成功地在2”的藍寶石基板上製作最小線寬400 nm、最高蝕刻深度1.2 μm的結構。
在圖形化藍寶石基板發光二極體的光電效率量測部份,我們在同一片基板上製作了六種不同特徵尺寸的結構,尺寸分別為0.4、0.6、0.8、1.0、2.0、3.0 μm,在輸入電流為20 mA的情況下,六種不同尺寸的圖形化基板起始電壓分別為3.09、3.06、3.05、3.04、3.06、3.07和 3.06 V,且相較於平面基板二極體發光強度依序有著84.7 %、72.9 %、57.1 %、47.4 %、31.7 %、29.2 %的提升。在圖形化紅光發光二極體的部份,我們在窗戶層 (window layer) 上製作六種不同尺寸的洞狀結構,在輸入電流為20 mA的情況下,平面式發光二極體的輸出功率為1.16 W,而圖形化發光二極體的輸出功率分別為1.43, 1.42, 1.38, 1.35, 1.28, 1.22 mW,其中0.4 μm圖形化二極體的發光功率相較於平面式發光二極體提升了23.3%。
This thesis developed a novel nano-imprinting and metal contact transfer technology for improving the efficiency of light-emitting diodes (LEDs). The material PDMS is chosen as the soft mold to replace conventional silicon mold. In the imprinting lithography process, the soft mold contact method is adopted to reduce the negative effect from particles and to increase the yield rate of metal pattern transfer. The metal contact transfer method can directly transfer a patterned metal film from the PDMS mold to the top surface of a sapphire substrate or the top window layer of an AlInGaP LED. The transferred metal patterns are then used as the etching masks for subsequent ICP (Inductive Couple Plasma) dry etching process. Since metallic materials have a high etching selectivity to sapphire, we can fabricate high aspect ratio micro/nano-structures on sapphire substrate. Furthermore, the feature size in contact printing pattern transfer can easily achieve sub-micrometer and nanometer scale. In this work, we have successfully fabricated structures with a minimum line-width of 400 nm and highest etching depth around 1.2 μm.
To compare the photo- and electro- characteristics of the patterned sapphire substrate LEDs, we prepared pillar array structures with six different geometrical dimensions on a sapphire substrate. The diameters of patterned arrayed pillars are 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0 μm. For these six patterned sapphire LEDs, the forward voltages under 20 mA current injection are 3.09, 3.06, 3.05, 3.04, 3.06, 3.07, and 3.06 Volt, respectively, and the output intensities are 84.7 %, 72.9 %, 57.1 %, 47.4 %, 31.7 %, and 29.2 % higher than conventional LED without patterns on sapphire. As for the patterned AlInGaP LEDs, we fabricated six hole-array patterns on the top window layer and the diameters of the holes are again 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0 μm. Under 20 mA current injection, a conventional or a non-patterned AlInGaP LED has an output power of 1.16 mW, while the six patterned LEDs have output powers of 1.43, 1.42, 1.38, 1.35, 1.28, 1.22 mW, respectively. The smallest 0.4 μm diameter hole-array patterned LEDs produce output power about 23.3 % higher than conventional LEDs.
[1] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Letts., 64 (1994) 1687-1689.
[2] A. Xing, M. Davanco, Daniel J. Blumenyhal and Evelyn L. Hu, J. Vac. Sci. Technol. B, 22 (2004) 70-73.
[3] J. Lee, D. H. Kim, J. Kim and H. Jeon, Curr. Appl. Phys., 9 (2009) 633-635.
[4] S. H. Kim, K. D. Lee, J. Y. Kim, M. K. Kwon and S. J. Park, nanotechnology, 18 (2007) 055306.
[5] S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. Technol. B, 14 (1996) 4129-4133.
[6] M. Bender, M. Otto, B. Hadan, B. Vratzov, B. Spangenberg and H. Kurz, Microelectronic Eng., 53 (2000) 233-236.
[7] Y. Xia, D. Qin and M. Whitesides, Adv. Mater., 8 (1996) 1015-1017.
[8] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil and L. Montelius, Microelectronic Eng., 61-62 (2002) 441-448.
[9] Y. C. Lee and C. Y. Chiu, J. Micromech. Microeng., 18 (2008) 075013.
[10] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang. S. A. Stockman, F. A. Kish and M. G. Craford, Appl. Phys. Letts., 75 (1999) 2365-2367.
[11] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Juo and B. J. Lee, Mater. Sci. Eng. B, 138 (2007) 157-160.
[12] C. H. Liu, R. W. chuang, S. J. Chang, Y. K. Su, L. W. Wu and C. C. Lin, Mater. Sci. Eng. B, 112 (2004) 10-13.
[13] S. K. Kim, H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. h. Lee and H. G. Park, Appl. Phys. Letts., 94 (2009) 101102.
[14] Y. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, J. Display Technol., 3 (2007) 118-125.
[15] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, K. S. Wen and R. H. Horng, J. Phys. Chem. Solids, 69 (2008) 714-718.
[16] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg and H. Kurz, Microelectronic Eng., 53 (2000) 233-236.
[17] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng and G. Wang, J. Appl. Phys., 103 (2008) 014314.
[18] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li andC. C. Kao, J. Cryst. Growth, 311 (2009) 2973-2976.
[19] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons and M. M. Sigalas, Appl. Phys. Letts., 84 (2004) 3885-3888.
[20] J. J. Wierer, Jr, A. David and M. M. Megens, Nature Photonic, 3 (2009) 163-169.
[21] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato and T. Taguchi, Jpn. J. Appl. Phys., 40 (2001) L583-L585.
[22] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai, Jpn. J. Appl. Phys., 41 (2002) L1431- L1433.
[23] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, Solid-State Electronics, 47 (2003) 1539- 1542.
[24] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang and S. C. Shei, J. Cryst. Growth, 261 (2004) 466-470.
[25] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou and B. J. Lee, Mater. Sci. Eng. B, 122 (2005) 184-187.
[26] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lu, H. C. Kuo and S. C. Wang, IEEE Photon. Technol. Lett, 18 (2006) 1152-1154.
[27] J. H. Cheng, Y. C. Sermon Wu, W. C. Liao, B. W. Lin, Appl. Phys. Letts., 96 (2010) 051109.
[28] H. Schmid and B. Michel, Macromolecules, 33 (2000) 3042-3049.