| 研究生: |
宋宇翔 Sung, Yu-Hsiang |
|---|---|
| 論文名稱: |
City X :外骨骼科技輔助下的城市 City X: A City Aided by Exoskeleton Technology |
| 指導教授: |
簡聖芬
Chien, Sheng-Fen |
| 共同指導教授: |
康仕仲
Kang, Shih-Chung 黄蔚欣 Huang, Wei-Xin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 服務設計 、推測設計 、情境建構 、未來城市 、可穿戴式設備 |
| 外文關鍵詞: | service design, speculative design, situation construction, future city, wearable devices |
| 相關次數: | 點閱:85 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「可穿戴外骨骼機器人」即穿戴在使用者身體外部用以強化或輔助使用者力量及耐力的一種智慧機械結構。隨著可穿戴技術的發展,外骨骼機器人已經逐漸離開實驗室進入我們的日常生活,開始出現在城市環境中的機器人服務將改變我們的社會。外骨骼機器人的應用在現階段的發展仍是缺乏使用情境上的思考,在技術成熟的前提下,該裝置在都市中有何服務潛力可以被探索是本論文的重點之一,其次該服務系統該如何置入城市並與都市系統結構結合形成一種新的城市生活風格是本論文的另一個重點。
本研究中相關文獻的整理一部分為近年來可穿戴技術分類與發展,著重于外骨骼機器人近年來的技術發展方向,以及相關開發商推出的商品案例,強調外骨骼機器人作為一種輔具已逐漸經由商品的形式進入我們的生活之中。另一部分為探討此類功能輔具融入社會而可能產生的新價值,歸納幾種已經在生活中隨處可見的輔具其衍生出的工具以外的附加價值。最後一部分為對未來城市的想像,試圖去整理現有對未來城市的想像或是過去對現有城市的思考脈絡,重點在新科技技術進入城市的前提下,城市的發展會朝向何種趨勢。
設計探索主要分為兩個設計研究週期,在第一個設計研究週期,以外骨骼機器人使用者及相關專家的焦點團體訪談,獲取現有外骨骼機器人使用者的使用狀況作為設計的依據。設計發展結合使用者經驗設計及服務設計相關方法,用城市設計的角度提出「外骨骼機器人共用艙」的設計策略,作為未來外骨骼穿戴服務的服務載體,以及「外骨骼驛站」的設計概念以城市視角整合外骨骼服務進入城市基礎系統,為城市建構新的情境。最後選擇成功大學校區及其周邊地區作為設計基地,評估共用艙的佈置環境,進行實際場域的設計操作;在第二個設計研究週期關注於討論外骨骼科技普及下的未來情境,以參與式推測設計的形式舉行該主題的工作坊,進行實踐探討,理解行動過程及參與者實踐過後的見解,並將其轉化為設計願景的伏筆,讓民眾有機會作為積極推測未來參與者。本研究初探外骨骼科技進入城市空間的服務情境,透過訪談觀察及相關設計思考的探索,最後歸納科技輔具融入城市生活的設計策略,提供一種新的城市生活願景,期待提供有價值的參考意義。
With the rapid advancement of wearable technology, exoskeleton robots are no longer confined to laboratories but have gradually become part of our daily lives. As these robots start to make appearances in urban environments, they hold the potential to bring about significant changes in our society. However, currently, there exists a lack of contextual thinking and well-defined guidelines for the application of exoskeleton robots in urban spaces. Addressing this issue, this design proposal aims to offer valuable insights into the various application scenarios of exoskeleton robots.
This research delves into exploring the possibilities of introducing exoskeleton technology into urban spaces by envisioning additional service scenarios. To achieve this, the study draws upon interviews and observations of experts and users in the field of exoskeleton robotics, which serve as the basis for user behavior design. The development of the design is supported by extensive literature research and interviews to establish the fundamental conditions for integrating exoskeleton robot services into urban settings.
The research adopts a strategic approach, conceptualizing the wearable space of exoskeleton technology as a spatial entity within the city. Simultaneously, it considers the integration of supporting infrastructure within the urban system, essential to accommodate these novel technological services. Through a comprehensive exploration of exoskeleton technology's integration into urban spaces, this research sheds light on the current service landscape. By identifying relevant design principles and strategies, it ultimately proposes a vision for seamlessly integrating technological aids into urban life, with the aim of enriching urban living and providing valuable references for future endeavors.
Ali, H. (2014). Bionic Exoskeleton: History, Development and the Future. IOSR-JMCE International Conference on Advances in Engineering & Technology (ICAET-2014), 5, 58–62. http://iosrjournals.org/iosr-jmce/papers/ICAET-2014/me/volume-5/12.pdf?id=7622
ASC Scientific. (2023). Topcon Pocket Stereoscope. ASC Scientific. https://www.ascscientific.com/map-making-equipment/stereoscope-stereo-photographs/topcon-pocket-stereoscope/
ASTRIDE BIONIX. (2023). LEX by Astride Bionix. https://astride.io/
Auger, J. (2013). Speculative design: crafting the speculation. Digital Creativity, 24(1), 11–35. https://doi.org/10.1080/14626268.2013.767276
Beattie, H., Brown, D., & Kindon, S. (2020). Solidarity through difference: Speculative participatory serious urban gaming (SPS-UG). International Journal of Architectural Computing, 18(2), 141–154. https://doi.org/10.1177/1478077120924337
Bruni, M. F., Melegari, C., De Cola, M. C., Bramanti, A., Bramanti, P., & Calabrò, R. S. (2018). What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. Journal of Clinical Neuroscience, 48, 11–17. https://doi.org/10.1016/j.jocn.2017.10.048
CYBERDYNE. (2023). HAL for Medical Use. CYBERDYNE. https://www.cyberdyne.jp/english/products/LowerLimb_medical.html
DAS Lab. (2019). MUJOSH concept store. DAS Lab. http://www.das-design.cn/product-20.html
De la Tejera, J. A., Bustamante-Bello, R., Ramirez-Mendoza, R. A., & Izquierdo-Reyes, J. (2020). Systematic Review of Exoskeletons towards a General Categorization Model Proposal. Applied Sciences, 11(1), 76. https://doi.org/10.3390/app11010076
Degginger, E. R. (n.d.). Foraminifera at 50x Single Celled protist. Alamy Stock Photo. Retrieved April 30, 2023, from https://www.alamy.com/stock-photo-foraminifera-at-50x-single-celled-protist-14876641.html
DiSalvo, C. (2021). FCJ-142 Spectacles and Tropes: Speculative Design and Contemporary Food Cultures. In M. L. Caldwell (Ed.), Why Food Matters (pp. 325–338). Bloomsbury Publishing Plc. https://doi.org/10.5040/9781350011465.ch-020
Dunne, A. (2008). Design for Debate. Architectural Design, 78(6), 90–93. https://doi.org/10.1002/ad.779
Dunne, A., & Raby, F. (2013). Speculative Everything: Design, Fiction, and Social Dreaming. The MIT Press.
Faisal, A. (2017). Computer science: Visionary of virtual reality. Nature, 551(7680), 298–299. https://doi.org/10.1038/551298a
FREE Bionics. (2019). FREE Walk. https://www.freebionics.com.tw/tw/freewalk
Gerber, A. (2018). Participatory speculation. Proceedings of the 15th Participatory Design Conference: Short Papers, Situated Actions, Workshops and Tutorial - Volume 2, 2, 1–4. https://doi.org/10.1145/3210604.3210640
Google VR. (n.d.). Google Cardboard. Google VR. Retrieved August 5, 2023, from https://arvr.google.com/cardboard/
Green, B. (2020). The Smart Enough City. The MIT Press.
Hacker, M., & Barden, R. A. (1991). Technology in Your World (Subsequent ed). Glencoe/McGraw-Hill School Pub Co.
Hanna, J. R., & Ashby, S. R. (2016). From Design Fiction to Future Models of Community Building and Civic Engagement. Proceedings of the 9th Nordic Conference on Human-Computer Interaction, 23-27-Octo, 1–10. https://doi.org/10.1145/2971485.2993922
Herr, H. (2009). Exoskeletons and orthoses: classification, design challenges and future directions. Journal of NeuroEngineering and Rehabilitation, 6(1), 21. https://doi.org/10.1186/1743-0003-
Hight, C., Beard, N., & Robinson, M. (2008). Hydrauli_City: Urban Design, Infrastructure, Ecology. ACADIA 2008, 158–165. https://doi.org/10.52842/conf.acadia.2008.158
Honda. (2020). Walking Assist. Medical EXPO. https://www.medicalexpo.com.cn/prod/honda/product-94185-580767.html
Hung, Y. (2020, May 18). 下一個展現時尚的配件:口罩. FASHION EXPRESS. https://www.fashionexpress.org.tw/focus/paper/5111652611
IEA. (2021). World Energy Outlook 2021. IEA Publications. https://www.iea.org/reports/world-energy-outlook-2021
Jain, A., Ardern, J., & Knight, D. (2019). Mitigation of Shock: Post‐Occupancy Anthropology. Architectural Design, 89(3), 54–59. https://doi.org/10.1002/ad.2435
Jervis, J. (2015, March 9). Fortis Exoskeleton. ICON. https://www.iconeye.com/design/fortis-exoskeleton
Kelly, K. (1995). Out of Control: The New Biology of Machines, Social Systems, & the Economic World (Reprint ed). Basic Books.
Koseki, K., Yozu, A., Takano, H., Abe, A., Yoshikawa, K., Maezawa, T., Kohno, Y., & Mutsuzaki, H. (2020). Gait training using the Honda Walking Assist Device® for individuals with transfemoral amputation: A report of two cases. Journal of Back and Musculoskeletal Rehabilitation, 33(2), 339–344. https://doi.org/10.3233/BMR-191726
Koskinen, I., Zimmerman, J., Binder, T., Redström, J., & Wensveen, S. (2012). Design Research Through Practice. Elsevier. https://doi.org/10.1016/C2010-0-65896-2
Krüger, O. (2021). Virtual Immortality: God, Evolution, and the Singularity in Post- and Transhumanism. Transcript Verlag.
Malcolm, P., Derave, W., Galle, S., & De Clercq, D. (2013). A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking. PLoS ONE, 8(2), e56137. https://doi.org/10.1371/journal.pone.0056137
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370–396. https://doi.org/10.1037/h0054346
Mataki, Y., Kamada, H., Mutsuzaki, H., Shimizu, Y., Takeuchi, R., Mizukami, M., Yoshikawa, K., Takahashi, K., Matsuda, M., Iwasaki, N., Kawamoto, H., Wadano, Y., Sankai, Y., & Yamazaki, M. (2018). Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: a case report. BMC Research Notes, 11(1), 201. https://doi.org/10.1186/s13104-018-3311-z
McFadden, C. H., & Keeton, W. T. (1995). Biology: An Exploration of Life. W. W. Norton & Company.
McHale, J. (1969). The Future of the Future. George Braziller.
Mertz, L. (2012). The Next Generation of Exoskeletons: Lighter, Cheaper Devices Are in the Works. IEEE Pulse, 3(4), 56–61. https://doi.org/10.1109/MPUL.2012.2196836
Monica, L., Draicchio, F., Ortiz, J., Chini, G., Toxiri, S., & Anastasi, S. (2021). Occupational Exoskeletons: A New Challenge for Human Factors, Ergonomics and Safety Disciplines in the Workplace of the Future. In N. L. Black, W. P. Neumann, & I. Noy (Eds.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021) (pp. 118–127). Springer. https://doi.org/10.1007/978-3-030-74611-7_17
Montgomery, E. P., & Woebken, C. (2016). Extrapolation Factory - Operator’s Manual: Publication Version 1.0 - Includes 11 Futures Modeling Tools (Bilingual ed). Createspace Independent Publishing Platform.
Nagenborg, M. (2020). Urban robotics and responsible urban innovation. Ethics and Information Technology, 22(4), 345–355. https://doi.org/10.1007/s10676-018-9446-8
Nessler, D. (2016). How to apply a design thinking, HCD, UX or any creative process from scratch. Digital Experience Design. https://medium.com/digital-experience-design/how-to-apply-a-design-thinking-hcd-ux-or-any-creative-process-from-scratch-b8786efbf812
Ortiz, J., Poliero, T., Cairoli, G., Graf, E., & Caldwell, D. G. (2018). Energy Efficiency Analysis and Design Optimization of an Actuation System in a Soft Modular Lower Limb Exoskeleton. IEEE Robotics and Automation Letters, 3(1), 484–491. https://doi.org/10.1109/LRA.2017.2768119
Pransky, J. (2021). Dr Homayoon Kazerooni: Professor at UC-Berkeley, pioneer of exoskeletons, founder and CEO of U.S. Bionics (DBA suitX), founder Ekso Bionics. Industrial Robot: The International Journal of Robotics Research and Application, 48(6), 765–769. https://doi.org/10.1108/IR-06-2021-0112
Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169. https://doi.org/10.1007/BF01405730
ROAM ROBOTICS. (2023). Elevate Action Shots - Roam Robotics. https://www.roamrobotics.com/elevate-action-shots/277paqecl5w6c3cwg95zbtswbazbjg
Robertson, T., & Simonsen, J. (2012). Challenges and Opportunities in Contemporary Participatory Design. Design Issues, 28(3), 3–9. https://doi.org/10.1162/DESI_a_00157
Sadler, S. (2005). Archigram: Architecture without Architecture. The MIT Press.
Samsung. (2023). Gear VR. Samsung. https://www.samsung.com/tw/support/model/SM-R322NZWABRI/
Scoble, R., & Israel, S. (2013). Age of Context: Mobile, Sensors, Data and the Future of Privacy. CreateSpace Independent Publishing Platform.
Shin, S.-Y., & Lee, H.-C. (2015). Fashion Glasses: Marketing Service Activation Strategy to Intensify the product in On-line Environment. Journal of the Korea Society of Computer and Information, 20(3), 139–144. https://doi.org/10.9708/jksci.2015.20.3.139
SUITX. (2021). An Introduction. SUITX. https://www.suitx.com/introduction
Tesla, N. (2010). My Inventions: The Autobiography of Inventor Nikola Tesla. Megalodon Entertainment LLC. (from the Pages of Electrical Experimenter 1919).
Wakkary, R., Oogjes, D., Lin, H. W. J., & Hauser, S. (2018). Philosophers Living with the Tilting Bowl. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12. https://doi.org/10.1145/3173574.3173668
Wee, A. (2016, May 22). Huawei digs into Google Daydream: VR gadgets will be available by this year. ZingGadget. https://en.zinggadget.com/huawei-digs-into-vr-daydream-vr-gadgets-will-be-available-by-this-year/
Woo, J., Whittington, J., & Arkin, R. (2020). Urban Robotics: Achieving Autonomy in Design and Regulation of Robots and Cities. 52 Connecticut Law Review 319. https://doi.org/10.2139/ssrn.3145460
李宏(編)(2013)。認識海洋動物。載於動物與海洋(頁2–21)。青蘋果數據中心。
李婉貞、梁容輝(2020)。「事物中心」設計之推測潛能:透過物本體視野的互動研究。設計學報,25(1),63–85。
李婉貞、梁容輝(2022)。可感知的撤出:從植物性印表機探索事物中心取徑之設計策略。設計學報,27(2),65–87。
金世海、黃慧生(2015)。垂直城市:可持續生活之道。中國社會科學出版社。
俞鴻章(2019)。福寶科技外骨骼機器人癱瘓高效率復健。DIGITIMES 電子時報。https://www.digitimes.com.tw/iot/article.asp?id=0000560353_2ZT4IWO54B8PD14A05SV7
柯布西耶(2011)。光輝城市(金秋野、王又佳 譯)。中國建築工業出版社。(原著出版於1933年)
宮保睿、顧廣毅(2020)。啟發性的未來:推測、身體與醫學–宮保睿、顧廣毅雙個展(2020年10月10日–2020年12月06日)。國立臺灣美術館。https://event.culture.tw/NTMOFA/portal/Registration/C0103MAction?actId=00105
宮保睿、顧廣毅(2021)。啟發性的未來II:推測、醫學、身體與性別(2021年12月10日–2021年12月19日)。臺北數位藝術中心。https://dac.taipei/project/啟發性的未來-ii:推測、醫學、身體與性別/
張維珊、蔡詩偉、陳怡如、葉沛杰、張國明、陳振菶、陳美蓮(2023)。職業用外骨骼的類別及潛在優點與風險。勞動及職業安全衛生研究季刊,31(2),53–64。https://www.airitilibrary.com/Publication/alDetailedMesh?docid=P20150527003-N202306290006-00004
陳文捷(2018)。論建築 | 勒.柯布西埃提出的“光輝城市”的概念到底是什麼?。自由微信。https://freewechat.com/a/MzA4MjgzODE2Nw==/2452991506/3
鞏書章(2012)。建築史論專題-建築經典導讀。國立陽明交通大學開放式課程。http://ocw.nctu.edu.tw/course_detail.php?bgid=5&gid=0&nid=417&page=2