簡易檢索 / 詳目顯示

研究生: 吳豐聿
Wu, Feng-Yu
論文名稱: 鎳鈷錳三元鋰電池選擇性萃取回收技術研究
Study of selective extraction of NCM Li-ion Batteries
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 循環經濟鋰電池回收NCM鋰電池選擇性萃取低雜質
外文關鍵詞: circular economy, NCM Lithium ion batteries, LIBs recycling, selective extraction, low impurity level
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i 目錄 viii 表目錄 x 圖目錄 xi 第1章、 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第2章、 文獻回顧 4 2.1 循環經濟 4 2.2 鋰電池結構與種類 5 2.3 回收流程的經濟性議題 6 2.4 現行商業流程介紹 13 2.4.1 商業火法流程 14 2.4.2 商業濕法流程 16 2.4.3 混合式流程 17 2.5 焙燒機制探討 18 2.6 濕法流程反應機制 23 2.6.1 浸出 24 2.6.2 萃取 25 2.6.3 沉澱 28 2.7 現行流程經濟效益探討 28 2.8 電池再製參考標準 29 第3章、 實驗方法與步驟 31 3.1 原料 31 3.2 實驗設備 33 第4章、 結果與討論 43 4.1 預處理流程 (pretreatment stage) 43 4.1.1 放電 43 4.1.2 模組拆解與分類 45 4.2 焙燒 (calcination) 45 4.2.1 巨觀與XRD結果討論 46 4.2.2 SEM微觀觀察與EDS成分分析結果 48 4.2.3 焙燒後樣品ICP成分分析 51 4.2.4 焙燒流程總結 52 4.3 二次處理流程 (secondary treatment stage) 52 4.3.1 物理磁選 53 4.3.2 選擇性移除雜質(NaOH) 53 4.4 浸出 59 4.5 深度還原流程 64 4.5.1 直接沉澱實驗 64 4.5.2 選擇性萃取雜質 70 4.6 回收效益評估 76 第5章、 總結: 81 參考文獻 84

    [1]中華民國統計資訊網,Retrieved:May, 30, 2021, from: https://statdb.dgbas.gov.tw/pxweb/Dialog/viewplus.asp?ma=EP0105A1A&ti=%25A9U%25A7%25A3%25B2M%25B2z%25AA%25AC%25AAp%25A6~&path=../PXfile/Environment/&lang=9&strList=L
    [2]中華民國環保署事業廢棄物申報統計,Retrieved:May, 30, 2021, from:https://statis91.epa.gov.tw/epa/stmain.jsp?sys=220&ym=9600&ymt=10800&kind=21&type=1&funid=11058&cycle=4&outmode=0&compmode=0&outkind=3&fld0=1&fld4=1&cod00=1&rdm=yn3592ay
    [3]政府間氣候變化專門委員會(IPCC),Global warming of 1.5℃,Retrieved:May, 30, 2021, from:https://www.ipcc.ch/sr15/chapter/chapter-1/
    [4] Julian M. Allwood, Chapter 30 - Squaring the Circular Economy: The Role of Recycling within a Hierarchy of Material Management Strategies, Editor(s): Ernst Worrell, Markus A. Reuter, Handbook of Recycling, Elsevier, 2014, p445-477
    [5] M. Geissdoerfer, P. Savaget, N.M.P. Bocken, E. J. Hultink, “The Circular Economy – A new sustainability paradigm?”, J. Cleaner Prod., Vol. 143, 2017, p757-768
    [6] S. Fujita, H. Akashi, M. Adachipatent, patent. JP3956584B2 : Secondary battery
    [7] L. Li, J. B. Dunn, X. X. Zhang, L. Gaines, R. J. Chen, F. Wu, and K. Amine, “Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment”, J. Power Sources, 233 (2013), 180.
    [8] C. Hanisch, T. Loellhoeffel, J. Diekmann, K. J. Markley, W. Haselrieder, and A. Kwade, “Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes”, J. Clean Prod., 108 (2015), 301.
    [9] T. Zhang, Y. He, F. Wang, L. Ge, X. Zhu, and H. Li,” Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques”, Waste Manage., 34 (2014), 1051.
    [10] J. Diekmann, C. Hanisch, L. Froboese, G. Schaelicke, T. Loellhoeffel, A.S. Foelster, A. Kwade,” Ecological Recycling of Lithium-Ion Batteries from Electric Vehicles with
    Focus on Mechanical Processes”, J. Electrochem. Soc., 164 (2017), A6184.
    [11] M. Grützke, X. Mönnighoff, F. Horsthemke, V. Kraft, M. Winter, S. Nowak, “Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents”, RSC Adv., 5 (2015), 43209–43217
    [12] C. P. Grey and J. M. Tarascon, “Sustainability and in situ monitoring in battery development”, Nat. Mater., 16 (2017), 45.
    [13] A. Kwade, J. Diekmann (2018), “Recycling of Lithium-Ion Batteries : the LithoRec Way”, springer, p2-5
    [14] F. Perdu (2016). Overview of existing and innovative batteries. Science and energy seminar. e-EPS, Les Houches.
    [15] C. Pillot. (2017), The rechargeable battery market and main trends 2016–2025. International battery seminar & exhibit, Retrieved:April, 26, 2021, from:https ://www.avicenne.com/pdf/Fort_Lauderdale_Tutorial_C_Pillot_March2015.pdf.
    [16] H. E. Melin, The lithium-ion battery end-of-life market, 2018, Circular Energy Storage
    [17]電動機車網,Retrieved:June, 10, 2021, from:https://www.lev.org.tw/default.asp,
    [18]吳笙卉、方家振, April, 2020, 工業雜誌400期,循環經濟專欄,鋰電池循環經濟(上),
    [19] C. Pillot. (2016), The worldwide rechargeable battery market 2015-2025, Avicenne Energy.
    [20] U.S. Geological Survey, (2019), Mineral commodity summaries 2019: U.S. Geological Survey, 200 p., Retrieved:June, 10, 2021, from:https://pubs.er.usgs.gov/publication/70202434, https://doi.org/10.3133/70202434.
    [21] London metal exchange, Retrieved:May, 25, 2021, from:https://www.lme.com/en-GB/Metals/Minor-metals/Cobalt#tabIndex=0
    [22] JOGMEC (2020), 鉱物資源マテリアルフロー 2019, Retrieved from:http://mric.jogmec.go.jp/news/202005_mr-2/
    [23] London metal exchange, Retrieved:May, 25, 2021, from:https://www.lme.com/Metals/Non-ferrous/Nickel#tabIndex=0
    [24] M. Grützke, V. Kraft, B. Hoffmann, S. Klamor, J. Diekmann, A. Kwade, M. Winter, S. Nowak, “Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle”, J. Power Sources, Vol. 273 (2015), Pages 83-88,
    [25] N. Vieceli, C. A. Nogueira, C. Guimaraes, M. F. C. Pereira, F. O. Durao, and F. Margarido, “Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate”, Waste Manage., 71 (2018), 350.
    [26] Y. Fu, Y. He, L. Qu, Y. Feng, J. Li, J. Liu, G. Zhang, and W. Xie, “Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system”, Waste Manage., Vol. 88 (2019), p191-199
    [27] J. Hu, J. Zhang, H. Li, Y. Chen, and C. Wang, “A promising approach for the recovery of high value-added metals from spent lithium-ion batteries”, J. Power Sources, Vol. 351, (2017), p192-199,
    [28] L. Li, Y. Bian, X. Zhang, Y. Yao, Q. Xue, E. Fan, F. Wu, and R. Chen, “A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries”, Waste Manage., Vol. 85 (2019), p437-444,
    [29] Z. Li, J. Huang, B. Y. Liaw, V. Metzler, and J. Zhang, “A review of lithium deposition in lithium-ion and lithium metal secondary batteries”, J. Power Sources, Vol. 254 (2014), p168-182
    [30] F. Gu, J. Guo, X. Yao et al, “An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China”, J. Clean Prod., 161 (2017), p765-780
    [31] F. Saloojee, J. Lloyd, Lithium battery recycling process. Department of Environmental affairs Development Bank of South Africa, 2015, (Project No. DB-074 (RW1/1016))
    [32] X. Zeng, J. Li, L. Liu, “Solving spent lithium-ion battery problems in China: opportunities and challenges”, Renew Sustain Energy Rev., 52 (2015), p1759–1767.
    [33] Cheret D, Santen S (2007) Battery recycling. U.S. Patent No.7,169,206
    [34] Sonoc A, Jeswiet J, Soo VK, (2015) Opportunities to improve recycling of automotive lithium ion batteries. Procedia CIRP 29:752–757. https ://doi.org/10.1016/j.proci r.2015.02.039
    [35] H. Pinegar, Y.R. Smith, “Recycling of End-of-Life Lithium Ion Batteries, Part I: Commercial Processes”, J. Sustain. Metall., 5 (2019), p402–416
    [36] Tedjar F, Foudraz J-C (2010) Method for the mixed recycling of lithium-based anode batteries and cells. U.S. Patent No. US 7,820,317
    [37] C. Hanisch, T. Loellhoeffel, J. Diekmann, K. J. Markley, W. Haselrieder, A. Kwade, “Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes”, J. Clean Prod., Vol. 108, Part A (2015), p301-311,
    [38] S. Krüger, C. Hanisch, A. Kwade, M. Winter, S. Nowak, “Effect of impurities caused by a recycling process on the electrochemical performance of Li [Ni0.33Co0.33Mn0.33] O2”, Journal of Electroanalytical Chemistry, Vol. 726 (2014), p91-96,
    [39] Xianlai Zeng, Jinhui Li & Narendra Singh, “Recycling of Spent Lithium-Ion Battery: A Critical Review”, Critical Reviews in Environmental Science and Technology, 44:10 (2014), p1129-1165
    [40] Z. Li, J. Huang, B. Y. Liaw, V. Metzler, and J. Zhang, “A review of lithium deposition in lithium-ion and lithium metal secondary batteries”, J. Power Sources, Vol. 254 (2014), p168-182
    [41] G. Lombardo, B. Ebin, M. R. S. Foreman, B. M. Steenari, and M. Petranikova, “Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction”, ACS Sustain. Chem. Eng., 7, 16 (2019), p13668-13679
    [42] Jiang L, Wang Q, Sun J., “Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte”, J. Hazard Mater., 351 (2018), p260-269
    [43] David R. Gaskell, David E. Laughlin (2017), Introduction to the Thermodynamics of Materials 6th edition, Taylor and Francis Group, https://doi.org/10.1201/9781315119038
    [44] L. Sun, K. Qiu, “Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries”. Waste Manag., 32(8) (2012), p1575-1582.
    [45] L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, “Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant”, J Hazard Mater., 15;176(1-3) (2010), p288-293.
    [46] X. Chen, H. Ma, C. Luo, T. Zhou, “Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid”, J Hazard Mater., 326 (2017), p77-86.
    [47] L. Li, L. Zhai, X. Zhang et al, “Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process”, J Power Sources, 262 (2014), p380–385.
    [48] CK Lee, KI Rhee, “Preparation of LiCoO2 from spent lithium-ion batteries”, J Power Sources, 109 (2002), p17–21.
    [49] W. Tang, X. Chen, T. Zhou et al, “Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process”, Hydrometallurgy, 147–148 (2014), p210–216.
    [50] J. Nan, D. Han, X. Zuo, “Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction”, J Power Sources, 152 (2005), p278–284.
    [51] H. Wang, B. Friedrich, “Development of a Highly Efficient Hydrometallurgical Recycling Process for Automotive Li–Ion Batteries”, J. Sustain. Metall., 1 (2015), p168–178
    [52] L. Li, L. Zhai, X. Zhang et al, “Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process”, J Power Sources, 262 (2014), p380–385.
    [53] S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, Y. H. Kim, “Development of a metal recovery process from Li-ion battery wastes”, Hydrometallurgy, Vol. 79, Issues 3–4 (2005), p172-181,
    [54] F. Pagnanelli, E. Moscardini, P. Altimari et al, “Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval”, Waste Manage., 60 (2017), p706–715.
    [55] Virolainen S, Fallah Fini M, Laitinen A, Sainio T, Solvent extraction fractionation of Li-ion battery leachate containing Li, Ni, and Co., Separation and Purification Technology, vol.179 (2017), p274–282.
    [56] T. Suzuki, T. Nakamura, Y. Inoue, M. Niinae, J. Shibata, “A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media”, Separation and Purification Technology, Vol.98 (2012), p396-401
    [57] R. Weyhe (2013), in Recycling und Rohstoffe (Eds: K. J. Thome´-Kozmiensky, D. Goldmann), Bd. 6, Vivis Verlag, Nietwerder, p505-525.
    [58] Doron Aurbach et al, “Studies of Aluminum-Doped LiNi0.5Co0.2Mn0.3O2: Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics”, J. Electrochem. Soc., 162 (2015), A1014
    [59] J. Ren, R. Li, Y. Liu, Y. Cheng, D. Mu, R. Zheng, J. Liu, C. Dai, “The Impact of Aluminum Impurity on the Regenerated Lithium Nickel Cobalt Manganese Oxide Cathode Materials from Spent LIBs”. New J. Chem., 41 (2017), p10959−10965.
    [60] S. Krüger, C. Hanisch, A. Kwade, M. Winter, S. Nowak, “Effect of impurities caused by a recycling process on the electrochemical performance of Li[Ni0.33Co0.33Mn0.33]O2”, J. Electroanal. Chem., 726 (2014), p91−96.
    [61] R. Zhang, Y. Zheng, Z. Yao, P. Vanaphuti, X. Ma, S. Bong, M. Chen, Y. Liu, F. Cheng, Z. Yang, and Y. Wang, “Systematic Study of Al Impurity for NCM622 Cathode Materials”, ACS Sustainable Chemistry & Engineering, 8 (26) (2020), p9875-9884
    [62] E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J. M. Pérez, M. Colledani, “Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments”, Journal of Environmental Management, Vol. 264 (2020), 110500
    [63] M. Aoyama, Y. Amano, K. Inoue, S. Honda, S. Hashimoto, Y. Iwamoto, “Synthesis and characterization of lithium aluminate red phosphors”, Journal of Luminescence, Vol. 135 (2013), p211-215,
    [64] Jim McDowall (2014), “A Guide to Lithium-Ion Battery Safety.”, Retrieved from:https://cmte.ieee.org/pes-essb/wp-content/uploads/sites43/2016/06/2015-WM-PN-A-Guide-to-Lithium-ion-safety-Jim-McDowall.pdf
    [65] D.A. Ferreira, L.M.Z. Prados, D. Majuste, M.B. Mansur, “Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries”, J Power Sources, 187 (2009), p238–246
    [66] Pierre R. Roberge (2008), Corrosion Engineering: Principles and Practice, McGraw-Hill Education.
    [67] F. King, General corrosion in nuclear reactor components and nuclear waste disposal systems, Woodhead Publishing Limited, 2012
    [68] Retrieved: June, 2, 2021 from:https://www.alibaba.com/?spm=a2700.galleryofferlist.scGlobalHomeHeader.10.2ad187d5B6lbtk
    [69] Mizuno bank, 車載用LiBリサイクルは日本企業にとってビジネスチャンスになるか, 2018, Retrieved: June, 2, 2021, from:https://www.mizuhobank.co.jp/corporate/bizinfo/industry/sangyou/pdf/1062_08.pdf
    [70] The world bank, GNI per capita, Atlas method (current US$), Retrieved: June, 2, 2021 from:https://data.worldbank.org/indicator/NY.GNP.PCAP.CD?order=wbapi_data_value_2014+wbapi_data_value+wbapi_data_value-last&sort=desc
    [71] J.B. Dunn, L. Gaines, M. Barnes, J. Sullivan, and M. Wang (2014), Argonne National Laboratory, “Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle, Energy”, https://doi.org/10.2172/1044525
    [72] Jo Dewulf, Geert Van der Vorst, Kim Denturck, Herman Van Langenhove, Wouter Ghyoot, Jan Tytgat, Kurt Vandeputte, “Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings”, Resources, Conservation and Recycling, Vol. 54, Issue 4 (2010), p229-234
    [73] S. Jia, B. Mao, S. Liu, Q. Sun, “Calculation and Analysis of Transportation Energy Consumption Level in China”, Journal of Transportation Systems Engineering and Information Technology, Vol. 10, Issue 1 (2010), p22-27,
    [74] List of common conversion factors (Engineering conversion factors) - IOR Energy Pty Ltd (archive.org), Retrieved: June, 2, 2021, from: https://web.archive.org/web/20100825042309/http://www.ior.com.au/ecflist.html
    [75] Directive 2006/66/EC of the European Parliament and of the Council of the 6 September 2006 on batteries and accumulators and repealing Directive 91/157/EEC, Official Journal of the European Union. European Union, (2006), Retrieved: November, 13, 2015, from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:266:0001:0014:EN:PDF

    無法下載圖示 校內:2026-09-03公開
    校外:2026-09-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE