| 研究生: |
鄭湘霖 Cheng, Hsiang-Lin |
|---|---|
| 論文名稱: |
研究病毒相關凋亡及脂質代謝調控C型肝炎急性至慢性感染機制 Study on the viral-mediated apoptosis and lipid metabolic processes from acute to chronic hepatitis C virus infections |
| 指導教授: |
楊孔嘉
Young, Kung-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 急性感染 、慢性感染 、早期凋亡 、c-Myc 、麩醯胺酸 、脂質代謝 |
| 外文關鍵詞: | acute infection, chronic infection, early apoptosis, c-Myc, glutamine, lipid metabolism |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
C肝炎病毒感染導致60-80%的患者從急性到慢性,其肝臟演易變成脂肪變性,纖維化,肝硬化和肝細胞癌。在C肝炎病毒感染過程中,宿主與病毒之間的相互作用決定了大多數疾病進程。有一些研究指出病毒感染會引發細胞凋亡。伴隨C肝炎病毒感染急性期至慢性期的凋亡機制的變化尚不清楚。在我們先前的研究中,體外慢性C肝炎感染模仿臨床病人的病毒血症從急性階段(指數,平原,下降和沈默期)到慢性階段。在流式細胞分析中,於下降至沉默期間約有四分之一的急性感染細胞表現早期凋亡,但感染細胞在接下來的天數仍然存活下來。早期的凋亡細胞意指細胞的磷脂酰絲氨酸暴露在細胞膜外,但是它們仍然保持膜的完整性。然而,從急性至慢性感染,支持C肝炎感染細胞傾向於早期凋亡而非細胞死亡的機制仍不清楚。有些研究指出,c-Myc可以幫助細胞的增殖,在大多數癌症及某些病毒感染如腺病毒,人類免疫缺陷病毒或卡波西氏肉瘤疱疹病中。c-Myc主要調節麩醯胺酸,代謝以支持維持細胞增殖所需的TCA循環。因此,我們假設c-Myc通過調節麩醯胺酸,的代謝途徑來促進HCV感染細胞的增殖和克服早期細胞凋亡。首先,我們發現早期細胞凋亡率到達最高時,c-Myc表現增高於感染細胞。因此,我們檢測了處理c-Myc抑制劑和麩醯胺酸剝奪後的早期凋亡;結果顯示,c-Myc抑制劑處理後,早期凋亡被提升了。然而,在麩醯胺酸剝奪後早期凋亡率並無受到影響。此結果暗示早期凋亡增加並非依賴麩醯胺酸。此外,報導指出C肝炎病毒感染影響脂質平衡且最終促進脂肪肝,且已知脂質代謝對於C肝炎病毒感染是不可或缺的過程。脂質代謝可能是另一條調節病毒持續存的途徑且有助慢性C型肝炎感染。因此,我們還檢測麩醯胺酸,剝奪和c-Myc抑製劑處理後C型肝炎從急性至慢性階段脂質含量的變化。結果表明,谷氨酰胺剝奪導致脂質積累取決於不同的感染階段。總而言之,不同感染階段麩醯胺酸剝奪導致脂質的積累,且影響病毒蛋白的表現。因此,我們可以推測,c-Myc可能涉及調節早期凋亡,而麩醯胺酸,剝奪誘導脂質積累可能與病毒進入不同的感染階段相關。
Hepatitis C virus (HCV) causes 60-80% of patients whose livers easy to develop steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma from acute to chronic infections. The interaction of host and virus determines the majority of disease progression during the HCV infection. Some studies indicated that the virus infection triggered cell apoptosis. The changes of apoptotic machinery accompanying HCV infection from acute to chronic stages are unclear. In our previous study, HCV chronic infection in vitro mimicked the clinical patient’s viremia at acute (exponential, plateau, declined and silencing phases) and chronic stages. In the FACS analysis, more than one-fourth of acute infected cells expressed early apoptosis in the declined to silencing phases, but infected cells further survived in the following days. Early apoptosis means that phosphatidylserine of cells is exposed on the external surface of the cell membrane, but they still retain membrane integrity. However, the mechanisms supporting HCV infected cells tending toward early apoptosis instead of cell death are unclear. Some research dictated that c-Myc could help cells to proliferate in most cancer and some virus infection such as Adenovirus, HIV or KSHV. c-Myc mainly coordinates the glutamine metabolism to support TCA cycle that is required for maintenance of cells proliferation. Hence, we hypothesis c-Myc-mediated metabolic pathway play a role in promoting proliferation of HCV infected cells and overcoming early apoptosis by regulation of glutamine. First, we found that c-Myc expression was elevated before the peak early apoptosis in infected cells. Hence, we examined the early apoptosis with c-Myc inhibitor treatment and glutamine-deprivation. The early apoptosis rate was elevated after c-Myc inhibitor treatment. However, the early apoptosis rates didn’t change when glutamine was removed from the medium. The data implied that the early apoptosis was glutamine-independent. Additionally, it has been reported that the HCV infection might affect the lipids homeostasis and finally promote the outcomes of the fatty liver disease. The lipids metabolism has been known as an indispensable process in HCV infection. Lipids metabolism might another pathway regulates viral persistence to help HCV chronic infection. Thus, we also detected the change of lipid contents from HCV acute to chronic stages after glutamine-deprivation and c-Myc inhibitor treatment. The result showed that the glutamine deprivation caused the lipids accumulation depending on the different infected stages. To conclude, the glutamine deprivation might induce the lipid accumulation and influence the viral proteins expression at different stages. Thus, we speculate that c-Myc might involve regulating the early apoptosis, whereas the glutamine deprivation inducing the lipids accumulation might affect the virus enter different infected stages. The mechanisms of c-Myc regulating early apoptosis in HCV infection need further elucidate.
1.Petruzziello, A., Marigliano, S., Loquercio, G., Cozzolino, A., and Cacciapuoti, C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World Journal of Gastroenterology;22: 7824-7840. (2016)
2.Kalafateli, M., Buzzetti1, E., Thorburn1, D., Davidson, B. R., Tsochatzis1, E., and Gurusamy, K. S. Pharmacological interventions for acute hepatitis C infection (Review). Cochrane Database of Systematic;3: 1-46 (2017)
3.Kamal, S. M. Acute hepatitis C: a systematic review. The American Journal of Gastroenterology ;103: 1283-1297. (2008)
4.Hajarizadeh, B., Grebely, J., and Dore, G. J. Case definitions for acute hepatitis C virus infection: A systematic review. Journal of Hepatology ;57: 1349-1360. (2012)
5.Alhaddad, O., Elsabaawy, M., Elshaarawy, O., Sabaawy, D., and Mansour, T. Acute Hepatitis C Virus Infection and Directly Acting Anti-Hepatitis C Virus Drugs. Journal of Gastrointestinal & Digestive System;7:1-3 (2017)
6.Seng-Lai Tan (2006) Hepatitis C Viruses: Genomes and Molecular Biology. In Stéphane C. and Jean M. P. (Series Ed.). Series title: HCV Genome and Life Cycle. Horizon Bioscience;p.5-46
7.Ashfaq, U. A., Javed, T., Rehman, S., Nawaz, Z., and Riazuddin, S. An overview of HCV molecular biology, replication and immune responses. Virology Journal ;8: 161-161. (2011)
8.Gawlik, K., and Gallay, P. A. HCV core protein and virus assembly: what we know without structures. Immunologic Research ;60: 1-10. (2014)
9.Roingeard, P., and Hourioux, C. Hepatitis C virus core protein, lipid droplets and steatosis. Journal of Viral Hepatitis 15: 157-164. (2008)
10.Kou, Y. H., Chang, M. F., Wang, Y. M., Hung, T. M., and Chang, S. C. Differential Requirements of NS4A for Internal NS3 Cleavage and Polyprotein Processing of Hepatitis C Virus. Journal of Virology;81: 7999-8808. (2007)
11.Abdo, A. A. Hepatitis C and Poor Quality of Life: Is it the Virus or the Patient? The Saudi Journal of Gastroenterology;14: 109-113. (2008)
12.Francesco, R. D., and Migliaccio, G. Challenges and successes in developing new therapies for hepatitis C. Nature;436: 953-960. (2005)
13.Brass, V., Bieck, E., Montserret, R., Wölk, B., Hellings, J. A., Blum, H. E., Penin, F., and Moradpour, D. An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. Journal of Biological Chemistry;277: 8130-8139. (2001)
14.Seng-Lai Tan (2006) Hepatitis C Viruses: Genomes and Molecular Biology. In He, Y., Staschke, K. A., and Tan.S.L. (Series Ed.). Series title: HCV NS5A: A Multifunctional Regulator of Cellular Pathways and Virus Replication.;p.267-292 (2006)
15.Lan, K. H., Sheu, M. L., Hwang, S. J., Yen, S. H., Chen, S. Y., Wu, J. C., Wang, Y. J., Kato, N., Omata, M., Chang, F. Y., and Lee, S. D. HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene ;21: 4801-4811. (2002)
16.Shi, S. T., Polyak, S. J., Tu, H., Taylor, D. R., Gretch, D. R., and Lai, M. M. C. Hepatitis C Virus NS5A Colocalizes with the Core Protein on Lipid Droplets and Interacts with Apolipoproteins. Virology ;292: 198-210. (2002)
17.Xu, Y., Martinez, P., Séron, K., Luo, G., Allain, F., Dubuisson, J., and Belouzard, S. Characterization of Hepatitis C Virus Interaction with Heparan Sulfate Proteoglycans. Journal of Virology ;89: 3846-3858. (2015)
18.Albecka, A., Belouzard, S., Beeck, A. O. D., Descamps, V., Goueslain, L., Michel, J. B., Tercé, F., Duverlie, G., Rouillé, Y., and Dubuisson, J. Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology ;55: 998-1007. (2012)
19.Blanchard, E., Belouzard, S., Goueslain, L., Wakita, T., Dubuisson, J., Wychowski, C., and Rouillé1, Y. Hepatitis C Virus Entry Depends on Clathrin-Mediated Endocytosis. Journal of Virology;80: 6964-6972. (2006)
20.Ortega-Prieto, A. M., and Dorner, M. (2016) The expanding toolbox for hepatitis C virus research.
21.Weinlich, S., Hüttelmaier, S., Schierhorn, A., Behrens, S. E., Ostareck, A., and Ostareck, D. H. IGF2BP1 enhances HCV IRES-mediated translation initiation via the 3′UTR. RNA;15: 1528-1542. (2009)
22.Lindenbach, B. D., and Rice, C. M. The ins and outs of hepatitis C virus entry and assembly. Nature reviews. Microbiology ;11: 688-700. (2013)
23.Ortega-Prieto, A. M., and Dorner, M. The expanding toolbox for hepatitis C virus research. Journal of Viral Hepatitis;23:320–329. (2016)
24.Paul, D., Madan, V., and Bartenschlager, R. Hepatitis C Virus RNA Replication and Assembly: Living on the Fat of the Land. Cell Host & Microbe;16: 569-579. (2014)
25.Shawa, I. T., Sheridan, D. A., Felmlee, D. J., and Cramp, M. E. Lipid interactions influence hepatitis C virus susceptibility and resistance to infection. Clinical Liver Disease;10: 2046-2484. (2017)
26.Shah, J., Usman, A. A., Saba K., Baila S., Nadeem, A. Dual behavior of HCV Core gene in regulation of apoptosis is important in progression of HCC. Infection, Genetics and Evolution;12; 236-239.
27.Otsuka M., Kato N., Taniguchi H., Yoshida H., Goto T., Shiratori Y., Omata M. Hepatitis C virus core protein inhibits apoptosis via enhanced Bcl-xL expression. Virology;296; 83-84.
28.Jeppesen, J., Hein, H. O., Suadicani, P., and Gyntelberg, F. Relation of High TG–Low HDL Cholesterol and LDL Cholesterol to the Incidence of Ischemic Heart Disease. Arteriosclerosis, Thrombosis, and Vascular Biology;17: 1114. (1997)
29.Syed, G. H., Amako, Y., and Siddiqui, A. Hepatitis C virus hijacks host lipid metabolism. Trends in Endocrinology and Metabolism ;21: 33-40. (2009)
30.Fukuhara, T., Ono, C., Francesc, P. B., and Matsuura, Y. Roles of Lipoproteins and Apolipoproteins in Particle Formation of Hepatitis C Virus. Trends in microbiology;23: 618-629. (2015)
31.Aizawa, Y., Seki, N., Nagano, T., and Abe, H. Chronic hepatitis C virus infection and lipoprotein metabolism. World Journal of Gastroenterology;21: 10299-10313. (2015)
32.Han, W., Hu, Y., Li, S., Huang, J., Nie, Q., Zhao, H., and Tang, J. Simultaneous dark fermentative hydrogen and ethanol production from waste bread in a mixed packed tank reactor. Journal of Cleaner Production;141: 608-611.(2017)
33.Kapadia, S. B., and Chisari, F. V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proceedings of the National Academy of Sciences of the United States of America;102: 2561-2566. (2005)
34.Pawlotsky, J.-M. NS5A inhibitors in the treatment of hepatitis C. Journal of Hepatology;59: 375-382. (2013)
35.Wang, H., and Tai, A. W. (2016) Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication. Viruses;8: 142.
36.Park, C.-Y., Jun, H.-J., Wakita, T., Cheong, J. H., and Hwang, S. B. Hepatitis C Virus Nonstructural 4B Protein Modulates Sterol Regulatory Element-binding Protein Signaling via the AKT Pathway. The Journal of Biological Chemistry;284: 9237-9246. (2009)
37.Kumar, D., Farrell, G., Kench, J., and George, J. Hepatic steatosis and the risk of hepatocellular carcinoma in chronic hepatitis C. Journal of Gastroenterology and Hepatology;20: 1395-1400. (2005)
38.Linde, D., Ellen, W., Tom V. B., Peter V. Major cell death pathways at a glance. Microbes and Infection;13:1050-62.(2009)
39.Boris Z., Sten O. Cell death mechanisms: Cross-talk and role in disease. Experimental Cell Research;8:1374-83.(2010)
40.Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S., Baehrecke, E. H., Blagosklonny, M. V., El-Deiry, W. S., Golstein, P., Green, D. R., Hengartner, M., Knight, R. A., Kumar, S., Lipton, S. A., Malorni, W., Nuñez, G., Peter, M. E., Tschopp, J., Yuan, J., Piacentini, M., Zhivotovsky, B., and Melino, G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell death and differentiation ;16: 3-11. (2009)
41.Barber, G. N. Host defense, viruses and apoptosis. Cell Death Differ;8: 113-126. (2001)
42.Balasubramanian, K., Mirnikjoo, B., and Schroit, A. Regulated externalization of phosphatidylserine at the cell surface - Implications for apoptosis. (2007)
43.Zwaal, R. F. A., Comfurius, P., and Bevers, E. M. Surface exposure of phosphatidylserine in pathological cells. Cellular and Molecular Life Sciences CMLS ;62: 971-988.(2005)
44.Leventis, P. A., and Grinstein, S. The Distribution and Function of Phosphatidylserine in Cellular Membranes. Annual Review of Biophysics ;39: 407-427. (2010)
45.Pelassy, C., Breittmayer, J. P., and Aussel, C. Regulation of phosphatidylserine exposure at the cell surface by the serine–base exchange enzyme system during CD95-induced apoptosis. Biochemical Pharmacology ;59: 855-863.(2000)
46.Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology;35: 495-516. (2007)
47.Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Programmed Cell Death (Apoptosis). In Molecular Biology of the Cell, 4th edition. New York. (2002)
48.Cuda, C. M., Pope, R. M., and Perlman, H. The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nature reviews. Rheumatology ;12: 543-558. (2016)
49.Vander Heiden, M. G., Plas, D. R., Rathmell, J. C., Fox, C. J., Harris, M. H., and Thompson, C. B. Growth Factors Can Influence Cell Growth and Survival through Effects on Glucose Metabolism. Molecular and Cellular Biology;21: 5899-5912. (2001)
50.Roos, W. P., and Kaina, B. DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine ;12: 440-450. (2006)
51.Sano, R., and Reed, J. C. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;1833: 3460-3470. (2013)
52.Thomson, B. J. Viruses and apoptosis. International Journal of Experimental Pathology;82: 65-76. (2001)
53.Roulston, A., Marcellus, R. C., and Branton, P. E. Viruses and Apoptosis. Annual Review of Microbiology ;53: 577-628. (1999)
54.Shakeri, R., Kheirollahi, A., and Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie ;135: 111-125.(2017)
55.Rath, P. C., and Aggarwal, B. B. TNF-Induced Signaling in Apoptosis. Journal of Clinical Immunology;19: 350-364. (1999)
56.Kantari, C., and Walczak, H. Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research;1813: 558-563. (2011)
57.Nagata, S. Fas Ligand-Induced Apoptosis. Annual Review of Genetics;33: 29-55. (1999)
58.Norbury, C. J., and Hickson, I. D. Cellular Responses to DNA Damage. Annual Review of Pharmacology and Toxicology ;41: 367-401. (2001)
59.Glick, D., Barth, S., and Macleod, K. F. Autophagy: cellular and molecular mechanisms. The Journal of pathology ;221: 3-12. (2010)
60.Papáčková, Z., and Cahová, M. Important role of autophagy in regulation of metabolic processes in health, disease and aging. Physiol Res;63: 409-420. (2014)
61.Baxt, L. A., and Xavier, R. J. Role of Autophagy in the Maintenance of Intestinal Homeostasis. Gastroenterology ;149: 553-562. (2015)
62.Tanida, I., Ueno, T., and Kominami, E. LC3 and Autophagy. Methods in Molecular Biology;445: 77-88. (2008)
63.Hansen, T. E., and Johansen, T. Following autophagy step by step. BioMedCentral Biology;9: 39-39. (2011)
64.Emilie, E., Simon, D., M., Tarik., A. Activation of unfolded protein response and autophagy during HCV infection modulates innate immune response. Journal of Hepatology ;5:1150-3. (2011)
65.Nesbit, C. E., Tersak, J. M., and Prochownik, E. V. MYC oncogenes and human neoplastic disease. Oncogene;18: 3004-3016. (1999)
66.Chi V. Dang, Linda M. S. Resar, Eileen Emison, Sunkyu Kim, Qing Li, Julia E. Prescott, Diane Wonsey, and Karen Zeller. Function of the c-Myc Oncogenic Transcription Factor Experimental Cell Research;253: 63–77. (1999)
67.Lüscher, B., and Larsson, L. G. The basic region/helix-loop - helix/leucine zipper domain of Myc proto-oncoproteins: Function and regulation. Oncogene;18: 2955-2966. (1999)
68.Dang, C. V. c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism. Molecular and Cellular Biology ;19: 1-11. (1999)
69.Miller, D. M., Thomas, S. D., Islam, A., Muench, D., and Sedoris, K. c-Myc and Cancer Metabolism. Clinical cancer research : an official journal of the American Association for Cancer Research;18: 5546-5553. (2012)
70.Prendergast, G. C. Mechanisms of apoptosis by c-Myc. Oncogene;18: 2967-2987. (1999)
71.McMahon, S. B. MYC and the Control of Apoptosis. Cold Spring Harbor Perspectives in Medicine;4: 1-9. (2014)
72.Juin P., Hueber AO., Littlewood T., Evan G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes & Development;11: 1367–1381. (1999)
73.Wise, D. R., and Thompson, C. B. Glutamine Addiction: A New Therapeutic Target in Cancer. Trends in biochemical sciences;35: 427-433. (2010)
74.Thai, M., Thaker, S. K., Feng, J., Du, Y., Hu, H., Ting Wu, T., Graeber, T. G., Braas, D., and Christofk, H. R. (2015) MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nature Communications;6: 1-9.
75.Yu, Y., Clippinger, A. J., and Alwine, J. C. Viral affects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends in microbiology;19: 360-367. (2011)
76.Gao P., Tchernyshyov I., Chang TC., Lee YS., Kita K., Ochi T., Zeller KI., De Marzo AM., Van Eyk JE., Mendell JT., Dang CV. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism;Nature;9; 458.
77.Yang, L., Venneti, S., and Nagrath, D. Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering ;19: 163-194. (2017)
78.Bhutia, Y. D., and Ganapathy, V. Glutamine Transporters in Mammalian Cells and Their Functions in Physiology and Cancer. Biochimica et biophysica acta;1863: 2531-2539. (2016)
79.Xiao, D., Zeng, L., Yao, K., Kong, X., Wu, G., and Yin, Y. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids;48: 2067-2080. (2016)
80.Altman, B. J., Stine, Z. E., and Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews Cancer;16: 619-634. (2016)
81.Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., and Stephanopoulos, G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature;481: 380-384. (2011)
82.Michalak, K. P., MaTkowska-Kwdziora, A., Sobolewski, B., and Wofniak, P. Key Roles of Glutamine Pathways in Reprogramming the Cancer Metabolism. Oxidative Medicine and Cellular Longevity;2015: 1-14. (2015)
83.Pan, K.-L., Lee, J.-C., Sung, H.-W., Chang, T.-Y., and Hsu, J. T. A. Development of NS3/4A Protease-Based Reporter Assay Suitable for Efficiently Assessing Hepatitis C Virus Infection. Antimicrobial Agents and Chemotherapy;53: 4825-4834. (2009)
84.Wakita, T. Isolation of JFH-1 Strain and Development of an HCV Infection System. In Hepatitis C: Methods and Protocols. Tang, H. (ed). Totowa, NJ: Humana Press, pp. 305-327. (2009)
85.Vermes, I., Haanen, C., Steffens-Nakken, H., and Reutellingsperger, C. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods;184: 39-51. (1995)
86.Vermes, I., Haanen, C., and Reutelingsperger, C. (2000) Flow cytometry of apoptotic cell death. Journal of Immunological Methods;243: 167-190.
87.Tsai, P., Lin, C.-C., Sun, H.-Y., Lee, J.-C., Chang, T.-T., and Young, K.-C. Viral dynamics of persistent hepatitis C virus infection in high-sensitive reporter cells resemble patient's viremia. Journal of Microbiology, Immunology and Infection. 1-10. (2017)
88.Chen, S. L., and Morgan, T. R. The Natural History of Hepatitis C Virus (HCV) Infection. International Journal of Medical Sciences;3: 47-52. (2006)
89.Koyama, A. H., Irie, H., Fukumori, T., Hata, S., Iida, S., Akari, H., and Adachi, A. Role of virus-induced apoptosis in a host defense mechanism against virus infection. Medical Investigation;45: 37-45. (1998)
90.Shuid, A. N., Safi, N., Haghani, A., Mehrbod, P., Haron, M. S. R., Tan, S. W., and Omar, A. R. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells. Apoptosis;20: 1457-1470. (2015)
91.Mohl, B.-P., Bartlett, C., Mankouri, J., and Harris, M. Early events in the generation of autophagosomes are required for the formation of membrane structures involved in hepatitis C virus genome replication. The Journal of General Virology;97: 680-693. (2016)
92.Chan, S. T., and Ou, J.-h. J. Hepatitis C Virus-Induced Autophagy and Host Innate Immune Response. Viruses;9: 224. (2017)
93.Kvansakul, M., Caria, S., and Hinds, G. M. The Bcl-2 Family in Host-Virus Interactions. Viruses;9:1-20. (2017)
94.Medvedev, R., Ploen, D., Spengler, C., Elgner, F., Ren, H., Bunten, S., and Hildt, E. HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles. Free Radical Biology and Medicine ;110: 300-315. (2017)
95.Shrivastava, S., Raychoudhuri, A., Steele, R., Ray, R., and Ray, R. B. Knockdown of autophagy enhances innate immune response in hepatitis C virus infected hepatocytes. Hepatology;53: 406-414. (2011)
96.Zhang, M., Fan, H.-Y., and Li, S.-C. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma. Biomedicine & Pharmacotherapy;73: 123-128. (2015)
97.Lin, C. P., Liu, J. D., Chow, J. M., Liu, C. R., and Liu, H. E. Small-molecule c-Myc inhibitor, 10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells. Anticancer Drugs;18: 161-170. (2007)
98.Chen, B.-J., Wu, Y.-L., Tanaka, Y., and Zhang, W. Small Molecules Targeting c-Myc Oncogene: Promising Anti-Cancer Therapeutics. International Journal of Biological Sciences;10: 1084-1096. (2014)
99.Lévy, P. L., Duponchel, S., Eischeid, H., Molle, J., Michelet, M., Diserens, G., Vermathen, M., Vermathen, P., Dufour, J. F., Dienes, H. P., Steffen, H. M., Odenthal, M., Zoulim, F., and Bartosch, B. Hepatitis C virus infection triggers a tumor-like glutamine metabolism. Hepatology;65: 789-803. (2017)
100.Moradpour, D., Kary, P., Rice, C. M., and Blum, H. E. Continuous human cell lines inducibly expressing hepatitis C virus structural and nonstructural proteins. Hepatology;28: 192-201. (1998)
101.Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K., and Bartenschlager, R. Characterization of Cell Lines Carrying Self-Replicating Hepatitis C Virus RNAs. Journal of Virology;75: 1252-1264. (2001)
102.Sanchez, E. L., and Lagunoff, M. Viral Activation of Cellular Metabolism. Virology;0: 609-618. (2015)
103.van den Heuvel, A. P. J., Jing, J., Wooster, R. F., and Bachman, K. E. Analysis of glutamine dependency in non-small cell lung cancer: GLS1 splice variant GAC is essential for cancer cell growth. Cancer Biology & Therapy;13: 1185-1194. (2012)
104.Sanchez, E. L., Carroll, P. A., Thalhofer, A. B., and Lagunoff, M. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLOS Pathogens;7: 1-18. (2015)
105.Chambers, J. W., Maguire, T. G., and Alwine, J. C. Glutamine Metabolism Is Essential for Human Cytomegalovirus Infection. Journal of Virology;84: 1867-1873. (2010)
106.Fontaine, K. A., Camarda, R., and Lagunoff, M. Vaccinia Virus Requires Glutamine but Not Glucose for Efficient Replication. Journal of Virology ;88: 4366-4374. (2014)
107.Chen, X., Shi, X., Gan, F., Huang, D., and Huang, K. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels. Veterinary Research;46: 32. (2015)
108.Jazwinski, A. B., and Muir, A. J. Direct-Acting Antiviral Medications for Chronic Hepatitis C Virus Infection. Gastroenterology & Hepatology;7: 154-162. (2011)
109.Blaising, J., and Pécheur, E.-I. Lipids ‒ A key for hepatitis C virus entry and a potential target for antiviral strategies. Biochimie;95: 96-102. (2013)
110.Ara, A. K., and Paul, J. P. New Direct-Acting Antiviral Therapies for Treatment of Chronic Hepatitis C Virus Infection. Gastroenterology & Hepatology;11: 458-466. (2015)