簡易檢索 / 詳目顯示

研究生: 蔣安迪
Chiang, An-Ti
論文名稱: 影像分割於單張影像深度估計之研究
Image Segmentation for Depth Estimation of Single View Images
指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 深度圖估計同質邊緣圖2D轉3D立體影像影像分割
外文關鍵詞: Homogeneity edge map, Depth map estimation, 3D image, 2D to 3D image conversion., Image segmentation
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著立體液晶螢幕的技術逐漸進步,人們將不再需要配戴立體眼鏡即可透過螢幕欣賞立體影像。也有越來越多的研究放在如何將影片立體呈現。目前比較新的一種方式是一張原圖配合上對應的深度圖,再配合上立體螢幕的轉換,而使得我們觀看時產生立體感。
    本論文將利用同質性的概念來對輸入影像做處理,產生對應的同質邊緣圖,再配合上動態輪廓演算法對影像分割,接著配合影像中一些可以參考相對深度的線索來給定影像深度,另外為了給定影像深度,本論文另外提出了一個深度給定系統,能幫助使用者輕易的給定深度,達成2D轉3D立體化的目標。

    After availability of 3D LCD display systems, people can perceive stereo images without wearing any special 3D glasses. There are many researches focused on 2D to 3D video generations due to lack of 3D video contents. The common 2D to 3D conversion technique first performs the depth map estimation and then transfers the original image associated with the estimated depth information into multiview images. Finally, people can preceive autostereoscopic scenes through 3D displays.
    In this thesis, we propose the concept of homogeneity to generate the homogeneous edge map of input images. We then extract the active contour by using Snake algorithm to homogeneous edge map such that we can robustly segment the desired objects from the input images. Finally, we can assign depth by using some prompts depending on the specified objects in the images. In addition, we also implement a depth assignment system which can help the users to assign depth image of single-veiw images effectively. By using the depth map generation system with the proposed techniques, we can achieve 2D to 3D image conversion easily.

    摘要(中文) .i Abstract (English) ii 誌 謝......................................... iii 目 錄......................................... iv 圖目錄......................................... vii 第1章 簡 介 1 1.1 研究背景 1 1.2 立體影像之簡介 2 1.3 研究目的與動機 7 1.4 論文大綱 8 第2章 常見影像分割原理與方法 10 2.1 簡介 10 2.2 影像分割原理說明 11 2.2.1 點檢測 12 2.2.2 線檢測 13 2.2.3 邊緣檢測 13 2.3 常見的影像的分割技術 16 2.3.1 區域為基底的分割法 17 2.3.2 以輪廓為基底的分割法 20 2.4 小結 23 第3章 利用同質邊緣圖之物件切割演算法 25 3.1 簡介 25 3.2 同質邊緣圖生成演算法流程 26 3.2.1 前置處理 28 3.2.2 同質數值計算 29 3.2.3 同質邊緣圖的產生與調整 32 3.3 結合同質邊緣圖與以輪廓為基底的分割法 38 3.4 小結 39 第4章 深度圖估測 40 4.1 簡介 40 4.2 相關研究 40 4.2.1 計算消失點與消失線 41 4.2.2 消失點分類 42 4.3 深度圖的類型與給定方式 43 4.3.1 室內影像 44 4.3.2 室外影像 47 4.4 小結 49 第5章 實驗結果之分析比較 51 5.1 結合同質邊緣圖與動態邊緣分割法之結果呈現 51 5.2 深度給定步驟結果呈現 57 第6章 結論與系統未來展望 63 6.1 結論 63 6.2 系統未來展望 64 參考文獻 65

    [1] K. S. Fu and J. K. Mu, “A Survey on Image Segmentation” Survey on image segmentation,” Pattern Recognition, vol. 13, pages 3-16, 1981.

    [2] N. R. Pal and S. K. Pal, ”A Review on Image Segmentation techniques” Pattern Recognition, Vol. 26, pages 1277-1294, 1993.

    [3] A. Tremeau and N. Borel. “A Region Growing and Merging Algorithm to Color Segmentation” Pattern Recognition, vol. 30, pages 1191-1203, 1997.

    [4] F. Moscheni, S. Bhattacharjee and M. Kunt, “Spatiotemporal segmentation Based on Region Merging” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 9, Sept. 1998.

    [5] M. Kass, A. Witkin and D. Terzopoulos, “Snake:Active Contour Models” International Journal of Computer Vision. Vol. 1, No. 4, pages 321-331, 1987.

    [6] F. Jing, M. Li, H. J. Zhang and B Zhang, ”Unsupervised Image Segmentation Using Local Homogeneity Analysis” IEEE Transactions on Circuits and Systems for Video Technology, pages 672- 681, May 2004.

    [7] V. Nedovi′c, A. W. M. Smeulders, A. Redert and J. M. Geusebroek, “Depth Estimation via Stage Classification” 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008.

    [8] S. Battiatoa, A. Caprab, S. Curtib and M.L. Casciac, ”3D Stereoscopic Image Pair by Depth-Map Generation” 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on 3D Data Processing, pages 124- 131, Sept. 2004.

    [9] K.C. Liu, Q. Wu, W. C. Chen, C. F. Wu, F. C. Jan and T. Chen, “Example-Based Depth Generation from Single Image For 3D Content” 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008, pages 333-336, May 2008.

    [10] C. Wu, G. Er, X. Xie, T. Li, X. Cao and Q. Dai, “A Novel Method for Semi-automatic 2D to 3D Video Conversion” 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008, pages 65-68, May 2008.

    [11] R.C. Gonzales and R.E. Woods, “Digital Image Processing”, Second Edition, Addison Wesley, 2002.

    [12] I.P. Howard, J.R. Brian and A.P. Howard, “Binocular Vision and Stereopsis,” Oxford University Press, Chapter 7, 1995.

    [13] E. Trucco and A. Verri, “Introductory Techniques for 3D Computer Vision,” Prentice Hall, pages 140-143, 1998.

    [14] S. Battiato, S. Curti, E. Scordato, M. Tortora and M. La Cascia, “Depth Map Generation by Image Classification,” Proceeding of SPIE, Vol. 5302, pages 95-104, 2004.

    [15] S. Curti, D. Sirtori and F. Vella, “3D Effect Generation from Monocular View,” 3D Data Processing Visualization and Transmission, pages 550-553, 2002.

    [16] C. Simon, F. Bicking and T. Simon, “Estimation of Depth on Thick Edges from Sharp and Blurred Images,” IEEE Instrumentation and Measurement Technology Conference, Vol. 1, pages 323-328, 2002.

    [17] F. Deschen, D. Ziou and P. Fuchs, “Homotopy-Based Estimation of Depth Cues in Spatial Domain,” IEEE International Conference on Pattern Recognition, Vol. 3, pages 627-630, 2002.

    [18] V. Cantoni, L. Lombardi, M. Porta and N. Sicard, “Vanishing Point Detection: Representation Analysis and New Approaches,” IEEE International Conference on Image Analysis and Processing, 2001.

    [19] Y.L. Chang, C.Y. Chen, S.F. Lin and L.G. Chen, ” Depth map generation for 2D-to-3D Conversion by Short-term Motion Assisted Color Segmentation,” International Conference on Multimedia and Expo,2007

    下載圖示 校內:2014-07-23公開
    校外:2014-07-23公開
    QR CODE