簡易檢索 / 詳目顯示

研究生: 鄧述先
Deng, Shu-Shian
論文名稱: 直接轉矩控制感應馬達驅動器之新式反流器切換策略之研究
Study of A New Inverter Switching Strategy for Direct Torque Control Induction Motor Drives
指導教授: 陳添智
Chen, Tien-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 110
中文關鍵詞: 直接轉矩控制法感應馬達驅動器反流器切換策略
外文關鍵詞: Induction Motor Drives (IM drives), Inverter Switching Strategy, Direct Torque Control (DTC), Space Vector Modulation (SVM)
相關次數: 點閱:139下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,直接轉矩控制法是相當活躍的研究課題之一,它是以解耦控制(direct decoupled control, DDC)為基礎的一種控制方法。直接轉矩控制法允許相當迅速及準確地控制馬達的磁通鏈及轉矩,而不需求助於複雜的磁場導向(field-oriented, FO)演算法與內部電流迴路調變計算;然而,為了將磁通鏈誤差及轉矩誤差限制在某一特定範圍、並且又要提供良好的追蹤表現,這種以切換表(switching table)為基礎的控制方法需要相當高的計算速度及取樣頻率。有時反流器的電晶體開關速度卻無法跟上這樣高的取樣控制頻率,這樣的情況通常造成很嚴重的速度及轉矩漣波。以上述的幾個課題為依據,本論文提出了三種新式的反流器切換策略,依序為:九階段轉矩磁滯比較策略、二十四分區磁通鏈磁滯比較策略,以及結合九階段轉矩比較與二十四分區磁通鏈圓的混合型切換策略。

    藉由將轉矩磁滯比較的輸出由三種選擇增加至九種選擇,九階段轉矩磁滯比較策略可以讓馬達的正向加速轉矩與反向加速轉矩的大小變得更有彈性;相反地,藉由增加混合型的電壓向量,二十四分區磁通鏈比較策略使得磁通鏈的追蹤變得更圓滑平順。最後本論文將九階段轉矩比較套用在二十四分區磁通比較策略上,它混合了兩種新式切換策略的優點,明顯地減小了傳統方法難以解決的速度漣波及轉矩漣波問題。此外,經由寫入一個適當的電壓向量切換表至控制程式中,本文提出的混合式切換策略相當容易設計及實現。模擬結果與實驗結果將證實,在廣範圍的速度命令之下且無論加載與否,本文所提出的新式混合型切換策略提供了相較於傳統方法相當低的速度漣波及轉矩漣波,且不失去傳統方法快速響應之優點。

    The direct torque control (DTC) is one of the actively researched control schemes which is based on the decoupled control of flux and torque. DTC allows a very quick and precise control of the flux and torque without calling for complex field-oriented algorithms and the inner current regulation loop. However, this switching-table-based DTC approach needs a very high sampling frequency for calculations of torque and flux in order to provide good tracking performance and limit the errors of torque and flux within the specified bands. Sometimes, the sampling frequency of control is too high as compared with the switching frequency of inverter, and therefore gives rise to significant speed and torque ripples. For coping with above-mentioned issues, three novel switching strategies for DTC-based drives have been proposed: the 9-level hysteresis torque comparator, the 24-sector flux comparator and the proposed hybrid switching strategy.

    By increasing the output of torque comparator from three to nine choices, the 9-level torque comparator makes the control scheme having more flexibility in positive/negative accelerations. On the contrary, by increasing the choices of mixed voltage vectors, the 24-sector flux comparator leads to a smoother tracking of flux linkage command. Applying the 9-level torque comparator to the 24-sector case, the proposed DTC can significantly reduce the torque ripples and speed ripples in comparison with the conventional switching strategy. Furthermore, the proposed switching strategy can be easily designed by a table composed of hybrid space voltage vectors. Simulated and experimental results will confirm that, without losing the fast torque response of conventional switching-table-based DTC, the proposed switching strategy provides lower speed and torque ripple in very wide speed range despite load condition.

    摘要 I Acknowledgements II Abstract III Contents IV List of Figures VII List of Tables XVI Symbols XVII Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Structure of the Thesis 5 Chapter 2 Direct Torque Control for the Induction Motor Drives 6 2.1 Dynamic Model of IM 6 2.2 DTC and Conventional Switching Technique 9 2.2.1 The Principle of DTC 11 2.2.2 The Space Vector Modulation 12 2.3 The Proposed DTC 17 2.3.1 The Nine-Level Hysteresis Comparator 18 2.3.2 The Twenty-Four-Sector Flux Comparator 21 2.3.3 Accomplishment of the Proposed DTC 23 Chapter 3 Simulation Results 29 3.1 Computer Simulation 29 3.2 Comparison between Proposed DTC and Conventional DTC 30 3.2.1 Comparisons of Different Speed Commands with Free Loading 30 3.2.2 Comparisons of Different Speed Commands with 1 N-m Load Adding/Removing 39 3.2.3 Comparisons of Different Speed Commands with CW/CCW 47 Chapter 4 Software Configuration of the Control System 52 4.1 Control Program 54 4.2 Accomplishment of the SVM 56 4.3 Functions of the TMS320F2812 DSP in motor control 56 4.3.1 Introductions of the TMS320F2812 DSP Event Managers 56 4.3.2 TMS320F2812 SPI Module 62 Chapter 5 Hardware Configuration of Experiment 64 5.1 TMS320F2812 DSP Experiment Board 65 5.1.1 The Features of TMS320F2812 DSP 66 5.1.2 Connector Descriptions of TMS320F2812 DSP Experiment Board 67 5.1.3 Peripherals Overview 69 5.2 Motor Driving Circuit 72 5.2.1 Motor Controlling, Start and Stop Circuit 72 5.2.2 Signal Separating, Inverter and Snubber Protecting Circuit 75 5.3 The Measurement Circuit of Three Phase Current 77 5.4 Shifting and Scaling Circuits 77 Chapter 6 Experimental Results 80 6.1 Experimental Results in Different Conditions 80 6.1.1 Comparisons of Different Speed Commands with Free Loading 81 6.1.2 Different Speed Commands with 1 N-m Load Adding/Removing in Proposed DTC 89 6.1.3 Different Speed with CW/CCW Commands in Proposed DTC 93 Chapter 7 Conclusions and Suggestions 97 7.1 Conclusions 97 7.2 Suggestions for Further Research 99 References 100 Appendix 103 A.1 Definitions of connector pins on TMS320F2812 DSP experiment board 103 A.1.1 JP1- Xilinx CPLD JTAG Connector 103 A.1.2 JP2- TI XDS410PP JTAG Connector 103 A.1.3 JP3- ADC/DAC Interface 104 A.1.4 JP4- Serial Port Interface 104 A.1.5 JP5- Digital I/O and Control Signal Interface 105 A.1.6 JP6- Motor Control Peripherals 106 A.1.7 JP7- Power Supply Connector 107 A.1.8 JP8- The eCAN Module Interface 107 A.1.9 JP9- RS232 Connector 107 A.1.10 MP/MC Mode Select 108 A.1.11 Boot Mode Select 108 A.1.12 XF ( ) 108 A.1.13 DS1- LCD Control Module 109 A.1.14 DS2- Keyboard Control Module 109 Vita 110

    [1] Stephen J. Chapman, Electric Machinery Fundamentals, 3rd, McGraw-Hill, New York, 1999.

    [2] M. Depenbrock, “Direct self-control (DSC) of inverter-fed induction machine,” IEEE Trans. on Power Electronics, vol. 3, pp. 420–429, Oct. 1988.

    [3] T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Trans. on Industry Applications, vol. 28, pp. 1045–1053, Sept./Oct. 1992.

    [4] I. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. on Industry Applications, vol. 22, pp. 820–827, Sept./Oct. 1986.

    [5] I. Takahashi and Y. Ohmori, “High-performance direct torque control of induction motor,” IEEE Trans. on Industry Applications, vol. 25, pp. 257–264, Mar./Apr. 1989.

    [6] M. Depenbrock, “Direct-self control of inverter-fed induction machine,” IEEE Trans. on Power Electronics, vol. 3, pp. 420–429, July 1988.

    [7] M. Depenbrock, “Direct-self control of the flux and rotary moment of a rotary-field machine,” U.S. Patent 4 678 248, July, 1987.

    [8] P. Tiitinen, “The next generation motor control method, DTC direct torque control,” Proceedings of IEEE International Conference on Power Electronics, Drives, and Energy Systems for Industrial Growth, pp. 37–43, 1996.

    [9] J. K. Kang and S. K. Sul, “Torque ripple minimization strategy for direct torque control of induction motor,” Conference Record of IEEE-IAS Annual Meeting, pp. 438–443, 1998.

    [10] S. Mir and M. E. Elbuluk, “Precision torque control in inverter-fed induction machines using fuzzy logic,” Conference Record of IEEE-IAS Annual Meeting, pp. 396–401, 1995.

    [11] I. G. Bird and H. Z. D. L. Parra, “Fuzzy logic torque ripple reduction for DTC based AC drives,” Electronics Letters, vol. 33, no. 17, pp. 1501–1502, 1997

    [12] Y. S. Lai, T. Y. Shihn, Y. S. Kuan, and H. C. Huang, “A novel inverter control technique for direct torque control drives,” Journal of Power Electronic Technology, vol. 39, pp. 71–77, 1997.

    [13] C. Lascu, I. Boldea, and F. Blaabjerg, “A modified direct torque control (DTC) for induction motor sensorless drive,” Conference Record of IEEE-IAS Annual Meeting, pp. 1887–1894, 1998.

    [14] Y. S. Lai and J. H. Chen, “A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction,” IEEE Trans. on Energy Conversion, vol. 16, pp. 220–227, Sept. 2001.

    [15] G. Buja, D. Casadei, and G. Serra, “Direct stator flux and torque control of an induction motor: Theoretical analysis and experimental results,” Proceedings of IEEE IECON’98, vol. 1, pp. T50–T64, 1998.

    [16] D. Casadei, G. Serra, and A. Tani, “Improvement of direct torque control performance by using a discrete SVM technique,” Proceedings of IEEE PESC’98, vol. 2, pp. 997–1003, 1998.

    [17] Yen.-Shin Lai, Wen-Ke Wang, and Yen-Chang Chen, “Novel switching techniques for reducing the speed ripple of AC drives with direct torque control,” IEEE Trans. on Industry Applications, vol. 51, no. 4, pp. 768–775, Aug. 2004.

    [18] Bimal K. Bose, Moden Power Electronics and AC Drives, Prentice Hall PTR, New-Jersey, 2002.

    [19] P. C. Krause and O. Waynczuk, Electromechanical Motion Devices, McGraw-Hill, New York, 1989.

    [20] 劉煥昌, 電機機械 (Electric machinery), 東華書局, 台灣, pp. 402-440, 1999.

    [21] D. Casadei, F. Profumo, G. Serra, A. Tani, “FOC and DTC: two viable schemes for induction motors torque control Power Electronics,” IEEE Trans. on Power Electronics, vol. 17, no. 5, pp. 779-787, Sept. 2002.

    [22] 林正浩, ”三相感應電動機之DSP直接轉矩控制系統研製,” 台灣大學碩士學位論文, 2001.

    [23] T. C. Chen, “Control of Voltage-source inverter using single-chip microprocessors,” International Journal of Electronics, vol. 88, no. 4, pp. 473-483, 2001.

    [24] Texas Instruments. TMS320F2810, TMS320F2812 Digital Signal Processors Data Manual, 2003.

    下載圖示 校內:2008-07-19公開
    校外:2008-07-19公開
    QR CODE