| 研究生: |
潘昭君 Pan, Zhao-Jun |
|---|---|
| 論文名稱: |
蘭科植物B群花部發育基因之研究 Study of the B-class MADS-box genes in Orchidaceae |
| 指導教授: |
陳虹樺
Chen, Hong-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 蘭科 |
| 外文關鍵詞: | floral development, MADS-box gene |
| 相關次數: | 點閱:104 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蘭科植物為開花植物中數量最龐大的一科,數量約有25,000種,佔所有開花植物的7 %。蘭科植物具有相當獨特的花部形態,由外向內之花輪分別為萼片、花瓣、唇瓣和合蕊柱,部分蘭花之萼片和花瓣形狀極為相似,合稱為tepal。蘭花花形上最大的特色之一為具有由花瓣高度特化而成之唇辦(labellum或lip),功能上可作為花粉傳媒者登陸的平台。蘭科植物之生殖構造由雌雄蕊癒合成單一個合蕊柱(column),此特徵可作為辨識蘭科植物的重要指標。蘭花花形不同於一般輻射對稱之模式,為特殊的兩側對稱花形。蘭花高度特化的花部結構有別於阿拉芥及水稻等模式植物,可提供生物學研究高度複雜花部發育調控機制之基材。
目前已有相當多文獻指出,在被子植物中許多調控萼片、花瓣、雄蕊及雌蕊發育之MADS-box基因對花部發育的重性,本實驗室已從姬蝴蝶蘭選殖出5個B群花部發育調控基因(4個類DEF/AP3及1個類GLO/PI),其中各個DEF/AP3基因在決定蝴蝶蘭花器發育分別扮演不同角色,類GLO/PI基因則參與花部及子房/胚珠之發育。本研究針對整個蘭科植物中四個亞科:拖鞋蘭亞科(Cypripedioideae)、綬草亞科(Spiranthoideae)、蘭亞科(Orchidoideae)以及樹蘭亞科(Epidendroideae)探討花部發育調控,以十種不同蘭亞科之蘭花(拖鞋蘭亞科:芭菲爾鞋蘭;綬草亞科:金線蓮、石蠶;蘭亞科:毛唇玉鳳蘭;樹蘭亞科:石斛蘭、鶴頂蘭、白鶴蘭、白拉索蘭、羊耳蘭與文心蘭) 為材料進行蘭花花部B群MADS-box基因之選殖,總共鑑定出14個類DEF/AP3及12個類GLO/PI基因。結果顯示,類GLO/PI基因在蘭科植物中具有相當高的保留度,在各花器的表現相同,譜系分析蘭科類GLO/PI基因為良好單源群,其中綬草亞科和蘭亞科中的類GLO/PI同源基因(paralog)並沒有合成一個單源群,顯示蘭科植物早期發生類GLO/PI基因複製事件。而類DEF/AP3基因群依序列註解可分成類PeMADS2~5 (Pe2~5)四基因組,形成Pe2/Pe5與Pe3/Pe4兩組姊妹群,表示蘭科植物之類DEF/AP3基因發生兩次複製事件。類Pe2/Pe5基因群主要表現在萼片及花瓣,類Pe3/Pe4基因群大部在唇瓣和合蕊柱表現。此外,部分類DEF/AP3基因具專一性表現於萼片、花瓣以及唇瓣。利用演化譜系分析、序列相似度分析及RT-PCR所得之表現,蘭科之類DEF/AP3基因經由複製事件產生類Pe2~5四基因組,而後發生歧異演化,造成Pe2/Pe5與Pe3/Pe4兩子群基因表現上為部分重覆。綜合這些結果,蘭科花部發育調控基因可分為高度保留之類GLO/PI基因與快速演化之類DEF/AP3基因,且各物種間具有差異複雜調控模式,此特性對蘭科植物快速種化、生殖模式及授粉機制皆扮演重要角色。此結果希望能對不同亞科之蘭花花部發育調控有進一步的了解,除此之外,也期望藉由分析不同蘭亞科花部發育的基因,印證蘭花花部形態為高度發育結果。
The B-class MADS-box genes composed of DEFICIENS/APETALA 3 (DEF/AP3) and GLOBOSA/PISTILATA (GLO/PI) lineages play important roles in petal and stamen identities. The spectacular flowers of Orchidaceae have a highly specialized labellum (or lip) and gynostemium, which are responsible for the diverse pollination syndromes. In addition, the perianth of Orchidaceae consists of two outer whorls of almost identical petaloid organs, which are generally referred as tepals. It has been hypothesized that the formation of the petaloid tepals could be due to the expression of class B genes into the first whorl of the perianth. Great diversity in floral morphology of Orchidaceae provides an great model to examine the potentially highly diversified gene regulation. In this study, 12 GLO-like and 14 DEF-like MADS-box genes from 10 species of 4 subfamilies in Orchidaceae, including Paphiopedilum Macabre (Cypripedioideae), Anoectochilus formosanus, Ludisia discolor (Spiranthoideae), Habenaria petelotii (Orchidoideae), Oncidium Gower Ramsey, Liparis distans, Dendrobium Spring Jewel, Brassavola nodosa, and Phaius tankervilliae, and Calanthe triplicata (Epidendroideae) were identified and characterized. Two to four DEF/AP3-like genes were identified in each orchid species. In contrast, most orchids have only one GLO/PI-like gene except for two species from Goodyerinae.
At the molecular phylogenetic level, one pair of the GLO/PI orthologs derived from A. formosanus and L. discolor positioned as sister group to GLO/PI orthologs from other Epidendroideae species. These results indicated that duplication event of GLO/PI-like gene occurred around the time of the ancestor of the Orchidaceae. The duplication event led to two GLO/PI-lineages, one GLO/PI-lineage of which had been lost in the Epidendroideae and Cypripedioideae. After the duplication event, single amino acid deletion independently occurred in the Goodyerinae and Orchidoideae. Within the GLO/PI ortholog, MADS-box sequence was highly conserved across the entire four subfamilies of Orchidaceae. Whereas, the orchid MADS-box genes in the DEF/AP3 lineage were less conserved than that in the GLO/PI lineage. Sequence analyses revealed that all the MADS-box genes were highly conserved among various orchid species except for the Cypripedioideae and Orchidoideae, suggesting that they were considered more primitive subfamilies and separated from other orchids. Furthermore, unlike members of monocots, most species in Orchidaceae contained more than one DEF/AP3 ortholog. It suggested that major duplication event occurred after the separation of the lineage to extend Orchidaceae and following that, minor duplication event occurred. The expression patterns examined by using RT-PCR showed that petal-specific, sepal-specific and lip-specific transcripts of DEF/AP3-like floral homeotic genes advanced the modified ABC model and gave clues to the sophisticated floral morphogenetic development network in Orchidaceae. The complex regulatory mechanism accomplished dramatic floral morphological homologs in lip and perianth resulted significant roles in orchid mating systems, the evolution of reproductive isolation and speciation. Duplication and diversification of DEF/AP3-like floral homeotic genes may be responsible for the diversification of floral homeotic functions and thus enhanced the evolution of orchids.
Aceto, S.; Caputo, P.; Cozzolino, S.; Guadio, L.; and Moretti, A. Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol. Phylogenet. Evol., 13(1):67-76, 1999.
Adam, H.; Jouannic, S.; Morcillo, F.; Richaud, F.; Duval, Y.; and Tregear, J.W. MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J. Mol. Evol., 62(1):15-31, 2006.
Albert, V.A. Cladistic relationships of the slipper orchids (Cypripedoideae: Orchidaceae) from congruent morphological and molecular data. Lindleyana, 9:115-132, 1994.
Ambrose, B.A.; Lerner, D.R.; Ciceri, P.; Padilla, C.M.; Yanofsky, M.F.; and Schmidt, R.J. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell, 5(3):569-579, 2000.
Bateman, R.M.; Pridgeon, A.M.; and Chase, M.W. Phylogenetics of subtribe Orichidinae (Orchidaceae) based on nuclear ITS sequences. 2. Infrageneric relationships and taxonomic revision to achieve monophyly of Orchis sensu stricto. Lindleyana, 12:113-141, 1997
Becker, A., and Theissen, G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol., 29(3):464-489, 2003.
Bowman, J.L., and Meyerowitz, E.M. Genetic control of pattern formation during flower development in Arabidopsis. Symp. Soc. Exp. Biol. , 45:89-115, 1991.
Bowman, J.L.; Smyth, D.R.; and Meyerowitz, E.M. Genes directing flower development in Arabidopsis. Plant Cell, 1(1):37-52, 1989.
Cameron, K. Phylogenetics and character evolution within Vanilloideae (Orchidaceae). In: Clark, J., Elliott, W., Tingley, G., and Biro, J., eds. Proceedings of the 16th World Orchid Conference. British Columbia: The Vancouver Orchid Society, 2002.
Cameron, K. Vanilloideae [15 generic treatments] Genera Orchidacearum. Oxford: Oxford University Press, 2003.
Cameron, K.M. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol. Phylogenet. Evol. , 31(3):1157-1180, 2004
Cameron, K.M.; Chase, M.W.; Whitten, W.M.; Kores, P.J.; Jarrell, D.C.; Albert, V.A.; Yukawa, T.; Hills, H.G.; and Goldman, D.H. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am. J. Bot., 86(2):208-224, 1999.
Causier, B.; Castillo, R.; Zhou, J.; Ingram, R.; Xue, Y.; Schwarz-Sommer, Z.; and Davies, B. Evolution in action: following function in duplicated floral homeotic genes. Curr Biol., 15(16):1508-1512, 2005.
Chase, M.W.; Cameron K.M.; Barrett, R.L.; and Freudenstein, J.V. DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon, K.M., Kell, S.P., Barrett, R.L., and Cribb, P.J., eds. Orchid conservation. Malaysia: Natural History Publications, 2003.
Chase, M.W.; Cameron, M.K.; Hills, H.; and Jarrell, D. DNA sequences and phylogenetics of the Orchidaceae and other lilioid monocots. Proceedings of the Fourteenth World Orchid Conference. Her Majesty's Stationary Office, Glasgow, U.K., 1994. pp. 61-73.
Chung, Y.Y.; Kim, S.R.; Kang, H.G.; Noh, Y.S.; Park, M.C.; Finkel, D.; and An, G. Characterization of two rice MADS box genes homologous to GLOBOSA. Plant Sci., 109:45-56, 1995.
Coen, E.S., and Meyerowitz, E.M. The war of the whorls: genetic interations controlling flowe development. Nature, 353(6339):31-37, 1991.
Cozzolino, S.; Caputo, P.; Aceto, S.; Rossi, W.; and De Luca, P. Testing the usefulness of ITS1 sequence as a tool to infer relationships in Orchis L. Delpinoa, 33/34:77-85, 1996.
Cozzolino, S., and Widmer, A. Orchid diversity: an evolutionary consequence of deception? Trends Ecol. Evol., 20(9):487-494, 2005.
Darwin, C. On the various contrivances by which orchids are fertilized by insets: John Murray, 1885.
Douzery, E.J.P.; Pridgeon, A.M.; Kores, P.; Linder, H.P.; Kurzweil, H.; and Chase, M.W. Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am. J. Bot., 86(6):887-899, 1999.
Dressler, R.L. Phylogeny and classification of the orchid family. Portland, Oregon: Timber Press, 1993.
Felsenstein, J. An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol., 46(1):101-111, 1997.
Ferrario, S.; Immink, R.G.; Shchennikova, A.; Busscher-Lange, J.; and Angenent, G.C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 15(4):914-925, 2003.
Freudenstein, J.V., and Chase, M.W. Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: utility and coding of length-change characters. Syst. Bot., 26(3):643-657, 2001
Freudenstein, J.V.; Senyo, D.M.; and Chase, M.W. Mitochondrial DNA and relationships in the Orchidaceae. Monocots: systematics and evolution. CSIRO Publishing, Melbourne, Australia 2000
Freudenstein, J.V.; van den Berg, C.; Goldman, D.H.; Kores, P.J.; Molvray, M.; and Chase, M.W. An expanded plastid DNA phylogeny of Orchidaceae and analysis of jackknife branch support strategy. Am. J. Bot., 91(1):149-157, 2004
Goldman, D.H.; Freudenstein, J.V.; Kores, P.J.; Molvray, M.; Jarell, D.C.; Whitten, W.M.; Cameron, K.M.; Jansen, R.K.; and Chase, M.W. Phylogenetics of Arethuseae (Orchidaceae) based on plastid matK and rbcL sequences. Syst. Bot., 26(3):670-695, 2001.
Goto, K., and Meyerowitz, E.M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. , 8(13):1548-1560, 1994.
Hsu, H.F., and Yang, C.H. An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol., 43(10):1198-1209, 2002.
Irish, V.F. The evolution of floral homeotic gene function. Bioessays., 25(7):637-646, 2003.
Irish, V.F., and Litt, A. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev., 15(4):454-460, 2005.
Jack, T.; Brockman, L.L.; and Meyerowitz, E.M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens. Cell 68(4):683-697, 1992.
Kang, H.G.; Jeon, J.S.; Lee, S.; and An, G. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol., 38(6):1021-1029, 1998
Kanno, A.; Saeki, H.; Kameya, T.; Saedler, H.; and Theissen, G. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol., 52(4):831-841, 2003
Kaufmann, K.; Melzer, R.; and Theissen, G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347(2):183-198, 2005.
Kim, S.; Yoo, M.J.; Albert, V.A.; Farris, J.S.; Soltis, P.S.; and Soltis, D.E. Phylogeny and diversification of B-function MADS-box genes in angiosperems: evolutionary and functional implications of a 260-million-year-old duplication. Am. J. Bot., 91(12):2102-2118, 2004.
Kores, P.J.; Cameron, K.M.; Molvray, M.; and Chase, M.W. The phylogenetic relationships of Orchidoideae and Spiranthoideae (Orchidaceae) as inferred from rbcL plastid sequences. Lindleyana., 12:1-11, 1997.
Kores, P.J.; Weston, P.H.; Molvray, M.; and Chase, M.W. Phylogenetic relationships within the Diurideae (Orchidaceae): inferences from plastid matK DNA sequences. Monocots: systematics and evolution. Collingwood, Victoria, Australia: CSIRO 2000
Kramer, E.M.; Dorit, R.L.; and Irish, V.F. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics, 149(2):765-783, 1998.
Kramer, E.M., and Irish, V.F. Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperems. Intl. J. Plant Sci., 161(6):S29-S40, 2000.
Kramer, E.M., and Jaramillo, M.A. Genetic basis for innovations in floral organ identity. J Exp Zoolog B Mol Dev Evol., 15(304):526-535, 2005.
Kramer, E.M.; Jaramillo, M.A.; and Di Stilio, V.S. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics, 166(2):1011-1023, 2004.
Lynch, M., and Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics, 154(1):459-473, 2000.
Ma, H. The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev., 8(7):745-756, 1994.
Mabberley, D.J. The Plant-Book: a portable dictionary of the vascular plants (2nd ed.). New York: Cambridge University Press, 1997.
Moon, Y.H.; Jung, J.Y.; Kang, H.G.; and An, G. Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Mol Biol., 40(1):167-177, 1999.
Mouradov, A.; Hamdorf, B.; Teasdale, R.D.; Kim, J.T.; Winter, K.U.; and Theissen, G. A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev. Genet., 25(3):245-252, 1999.
Munster, T.; Wingen, L.U.; Faigl, W.; Werth, S.; Saedler, H.; and Theissen, G. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses. Gene, 262(1-2):1-13, 2001.
Nagasawa, N.; Miyoshi, M.; Sano, Y.; Satoh, H.; Hirano, H.; Sakai, H.; and Nagato, Y. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130(4):705-718, 2003.
Neyland, R., and Urbatsch, L.E. A terrestrial origin for the Orchidaceae suggested by a phylogeny inferred from ndhF chloroplast gene sequences. Lindleyana, 10:244-251, 1995.
Neyland, R., and Urbatsch, L.E. Evolution in the number and position of fertile anthers in Orchidaceae inferred from ndhF chloroplast gene sequences. Lindleyana, 11:47-53, 1996a.
Neyland, R., and Urbatsch, L.E. Phylogeny of subfamily Epidendroideae (Orchidaceae) inferred from ndhF chloroplast gene sequences. Am. J. Bot., 83(9):1195-1206, 1996b.
Ojeda, I.; Carnevali, G.; Williams, N.H.; and Whitten, W.M. Phylogeny of the Heterotaxis Lindley complex (Maxillariinae): evolution of the vegetative architecture and pollination syndromes. Primero Congreso Internacional de Orquideologia Neotropical. Costa Rican, 2003.
Pelaz, S.; Ditta, G.S.; Baumann, E.; Wisman, E.; and Yanofsky, M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 11(405):200-203, 2000.
Pridgeon, A.M.; Cribb, P.J.; Chase, M.C.; and Rasmussen, F.N. Genera Orchidacearum. 2. Orchidaceae, 1: Oxford: Oxford University Press, 2001.
Romero, G.A., and Nelson, C.E. Sex dimorpholism in catasetum orchids: forcible pollen emplacement and male flower competition. Science, 232(4757):1538-1540, 1986.
Rudall, P.J., and Bateman, R.M. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol. Rev. Camb. Philos. Soc., 77(3):403-441, 2002.
Sambrook, J.; Fritsch, E.F.; and Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press, 2001.
Soltis, D.E.; Soltis, P.S.; and Zanis, M.J. Phylogeny of seed plants based on evidence from eight genes. Am. J. Bot., 89(10):1670-1681, 2002
Sommer, H.; Beltran, J.P.; Huijser, P.; Pape, H.; Lonnig, W.E.; Saedler, H.; and Schwarz-Sommer, Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J., 9(3):605-613, 1990.
Stellari, G.M.; Jaramillo, M.A.; and Kramer, E.M. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box–containing genes in the basal angiosperms. Mol. Biol. Evo.l, 21(3):506-519, 2004.
Sundstrom, J.; Carlsbecker, A.; Svensson, M.E.; Svenson, M.; Johanson, U.; Theissen, G.; and Engstorm, P. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev. Genet., 25(3):253-266, 1999
Tamura, M.N.; Yamashita, J.; Fuse, S.; and Haraguchi, M. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J. Plant Res., 117(2):109-120, 2004.
Tamura, M.N.; Yamashita, J.; Fuse, S.; and Haraguchi, M. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. J Plant Res., 117(2):109-120, 2004.
Theissen, G.; Becker, A.; Di Rosa, A.; Kanno, A.; Kim, J.T.; Munster, T.; Winter, K.U.; and Saedler, H. A short history of MADS-box genes in plants. Plant Mol. Biol., 42(1):115-149, 2000.
Trobner, W.; Ramirez, L.; Motte, P.; Hue, I.; Huijser, P.; Lonnig, W.E.; Saedler, H.; Sommer, H.; and Schwarz-Sommer, Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J., 11(13):4693-4704, 1992
Tsai, W.C.; Kuoh, C.S.; Chuang, M.H.; Chen, W.H.; and Chen, H.H. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol., 45(7):831-844, 2004.
Tsai, W.C.; Lee, P.F.; Chen, H.I.; Hsiao, Y.Y.; Wei, W.J.; Pan, Z.J.; Chuang, M.H.; Kuoh, C.S.; Chen, W.H.; and Chen, H.H. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol. , 46(7):1125-1139, 2005.
Tzeng, T.Y.; Liu, H.C.; and Yang, C.H. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J. Biol. Chem., 279(11):10747-10755, 2004
Tzeng, T.Y., and Yang, C.H. A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol., 42(10):1156-1168, 2001.
van den Berg, C.; Higgins, W.E.; Dressler, R.L.; Whitten, W.M.; Arenas, M.A.S.; Culham, A.; and Chase, M.W. A phylogenetic analysis of Laeliinae (Orchidaceae) based on sequence data from Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA. Lindleyana, 15:96-114, 2000.
Weigel, D., and Meyerowitz, E.M. The ABCs of floral homeotic genes. Cell, 78(2):203-209, 1994.
Whitten, W.M.; Williams, N.H.; and Chase, M.W. Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: combined molecular evidence. Am. J. Bot., 87(12):1842-1856, 2000.
Williams, N.H., and Whitten, W.M. Molecular phylogenetics and generic concepts in Maxillarieae (Orchidaceae). Primero Congreso Internacional de Orquideologia Neotropical, Costa Rica, 2003.
Winter, K.U.; Weiser, C.; Kaufmann, K.; Bohne, A.; Kirchner, C.; Kanno, A.; Saedler, H.; and Theissen, G. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol. Biol. Evol., 19(5):587-596, 2002.
Xu, Y.; Teo, L.L.; Zhou, J.; Kumar, P.P.; and Yu, H. Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J., 46(1):54-68, 2006.
Yukawa, T.; Ohba, H.; Cameron, K.M.; and M.W., C. Chloroplast DNA phylogeny of subtribe Dendrobiinae (Orchidaceae): Insights from a combined analysis based on rbcL sequences and restriction site variation. J. Plant Res., 109(2):169-176, 1996.