| 研究生: |
陳韋康 Chen, Wei-Kang |
|---|---|
| 論文名稱: |
分段複合式觸媒應用於高效能過氧化氫單基推進器之探討 A Study of Composite Catalyst Bed Segmentation for HTP Mono-propellant Thrusters |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 過氧化氫 、單基推進器 、觸媒床 、分段複合式觸媒床 、高效能過氧化氫 |
| 外文關鍵詞: | Hydrogen peroxide, HTP, Mono-propellant thruster, Catalyst bed, Composite catalyst bed, Segmentation, Sintering |
| 相關次數: | 點閱:98 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,人造衛星的微小化,在太空環境下,過往大型的姿態控制系統已逐漸被淘汰,追求高Isp的推進劑已成為過去式,像高濃度過氧化氫這類的綠色推進劑成為新世代的主軸,無毒且對環境衝擊小,大大節省了發展上的成本,加上台灣環境對其他推進劑取得不易,發展高效能過氧化氫單基推進系統應用於衛星姿態控制上,百益無害,於此至今國外雖有多項研究,但仍無商品化以及實際應用於太空執行任務的相關報導,即時切入該項研究有助於本國太空科技之躍進。
高效能過氧化氫單基推進器主要的關鍵技術在於觸媒與觸媒床設計,本研究團隊已成功地發展並搭載於探空八號火箭驗證在太空環境下的可行性。團隊過去以複合式觸媒床進行設計的推進器仍有穩定性上的缺點須加以探討,本研究延伸複合式銀觸媒床的概念,提出分段複合式觸媒床的設計,以抑制銀觸媒燒鎔(melting)的角度,進而改善反應室壓力不穩定的想法進行探討。研究中以透明反應器來探討過氧化氫分解機制以及造成銀觸媒燒鎔而影響過氧化氫分解不穩定的因素,是有別於過去相關研究將觸媒反應室視為黑盒子的另一特點。同時以液態過氧化氫與複合式觸媒床的觸媒反應來推論影響過氧化氫在觸媒床分解不完全的因素,進而以實驗結果作為分段複合式觸媒床之設計依據。最後實驗以1lbf等級推進器進行比較,分段複合式觸媒設計相較於全段複合式銀觸媒反應室壓力震盪有效的從23%下降到7%,Isp為120s,分解效率(ηC*)達88%,驗證了以抑制銀觸媒燒鎔的分段複合式觸媒床設計,有效改善反應室壓力震盪不穩定。
With improved miniaturization and MEMS (microelectromechanical) technology, new satellites become smaller and versatile. The large and high Isp attitude control system is no longer the dominant design consideration for new satellites. Instead, “green” and nontoxic propellants are becoming an attractive design issue. Green propellant such as high concentration hydrogen peroxide will play the key role in the new era. It is non-toxic, cost-effective and has a minor impact to the environment. In particular, it has special impact on Taiwan’s space technology development in view of the restriction of the export license. Although the HTP (High Test Peroxide) mono-propellant propulsion system for satellite attitude control has attracted intensive research attention, it has not been commercialized on the market and realized on the space mission.
The critical technique of the HTP mono-propellant thruster is the catalyst and the design of catalyst bed. The concept and feasibility of composite catalyst bed previously proposed by our team has been validated in the high altitude tests on board of the Sounding rocket VIII program, which has been successfully launched in June 2013. This study tries to expand the idea of composite catalyst bed and proposed a novel design concept of segmentation of the composite catalyst bed. The design focus on improve life span and stability of the catalyst bed of the HTP thruster. A special design of a transparent catalyst bed reaction chamber is constructed to study the reaction mechanism of hydrogen peroxide decomposition in the composite catalyst bed and the effects of catalyst bed segmentation. This is very different from the past research that treated the reaction chamber as a black box. Base on the catalyst reaction between liquid hydrogen peroxide and composite catalyst bad to infer the cause of hydrogen peroxide incomplete decomposition on catalyst bed. Then experiment results are applied as design guidelines for the segmentation of the composite catalyst bed. The concept is further validated on a 1 lbf-level HTP monopropellant thruster. Results from segmented and unsegmented composite catalyst beds are compared. The results show that the reaction chamber pressure oscillation drops from 23% to 7%, Isp is 120s, decomposing efficiency (ηC*) reaches 88%. The comparison shows that the design of segmentation composite catalyst bed can effectively improve the stability in reaction chamber of the HTP thruster.
An S., Lim H. and Kwon S., “Hydrogen Peroxide Thruster Module for Microsatellites with Platinum Supported by Alumina as Catalyst”, AIAA-2007-5467, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, July 8-11, 2007.
An S., Brahmi R. and Kwon S., “Transient Behavior of H2O2 Thruster : Effect of Injector Type and Ullage Volume”, Journal of Propulsion and Power, Vol. 25, No. 6, November - December 2009.
An S. and Kwon S., “Scaling and Evaluation of Pt/Al2O3 Catalytic Reactor for Hydrogen Peroxide Monopropellant Thruster”, Journal of Propulsion and Power, Vol. 25, No. 5, 2009, pp. 1041-1045.
Beutien T. R., Heister S. D., Rusek J. J. and Meyer S., “Cordierite-Based Catalytic Beds for 98% Hydrogen Peroxide”, AIAA-2002-3853, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7-10, 2002.
Bramanti C., Cervone A., Romeo L., Torre L., d’Agostino L., Musker A. and Saccoccia G., “Experimental Characterization of Advanced Materials for the Catalytic Decomposition of Hydrogen Peroxide”, AIAA Paper 2006-5238, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California, USA, July 9 – 12, 2006.
Blank R. A., Pourpoint T. L., Meyer S. E., Heister S. D. and Anderson W. E., “Experimental and Theoretical Performance of High-Pressure Hydrogen Peroxide Catalyst Beds”,Journal of Propulsion and Power, Vol. 28,No. 5, September-October 2012.
Chemical and Material Science Department, Rocketdyne, a Division of North American Aviation, Inc. Canoga Park, California Research Division, “Hydrogen Peroxide Handbook”, Edwards Air Force Base, California Air Force Systems Command United Sates Air Force, July,1967.
Chan Y.-A., “Development of a HTP Mono-propellant Thruster by Using Composite Silver Catalyst”, National Cheng Kung University, Department of Aeronautics and Astronautics, Dissertation for Master of Philosophy, 2011.
Chan Y.-A., Hsu H.-W. and Chao Y.-C., “Development of a HTP Monopropellant Thruster by Using Composite Silver Catalyst”, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Deigo, California, Jul 31 – Aug 3, 2011
George P. S. and Oscar. B., “Rocket Propulsion Elements”, Seventh Edition, A Wiley-Interscience publication, New York, 2000.
Kuan C.-K., Chen G.-B. and Chao Y.-C., “Development and Ground Tests of a 100-Millinewton Hydrogen Peroxide Monopropellant Microthruster”, Journal of Propulsion and Power, Vol.23, No.6, pp.1313-1320, 2007.
Laurence P.-R., Charles K., Maurice G., Rachel E. and Nicolas P.,“Hydrogen Peroxide Decomposition on Various Supported Catalysts Effect of Stabilizers”, Journal of Propulsion and Power, Vol. 18, No. 6, November-December 2002.
Lee S. L. and Lee C. W., “Performance characteristics of silver catalyst bed for hydrogen peroxide”, Aerospace Science and Technology 13, 12-17, 2009.
Mok J. S., Helms W. J., Sisco T. C. and Anderson W. E., “Thermal Decomposition of Hydrogen Peroxide, Part 1: Experimental Results”, Journal of Propulsion and Power, Vol. 21, No. 5, September-October 2005.
Pasini A., Torre L., Romeo L., Cervone A., d'Agostino L., Musker A. J. and Saccoccia G., “Experimental Characterization of a 5 N Hydrogen Peroxide Monopropellant Thruster Prototype”, AIAA-2007-5465, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, July 8-11, 2007.
Pasini A., Torre L., Romeo L., Cervone A. and d'Agostino L., “Testing and Characterization of a Hydrogen Peroxide Monopropellant Thruster ”, Journal of Propulsion and Power, Vol. 24, No.3, pp.507-515, 2008.
Pasini A., Torre L., Romeo L., Cervone A. and d'Agostino L., “Endurance Tests on Different Catalytic Beds for H2O2 Monopropellant Thrusters”, AIAA-2009-5472, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, Colorado, Aug. 2-5, 2009
Pearson N., Pourpoint T. and Anderson W. E., “Vaporization and Decomposition of Hydrogen Peroxide Drops”, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 20-23 July 2003.
Rusek J. J., “New Decomposition Catalysts and Characterization Techniques for Rocket-Grade Hydrogen Peroxide”, Journal of Propulsion and Power, Vol. 12,No. 3, pp.547-579, 1996.
Satterfield N. C. and Stein W. T., “Homogeneous Decomposition of Hydrogen Peroxide Vapor”, Journal of Physical Chemistry, Vol. 61, pp.537, November 1957.
Satterfield N. C., “Heterogeneous Catalysis in Industrial Practice”, Second Edition, Krieger Publishing Company, Malabar Florida, 1991.
Scharlemann, C., Schiebl, M., Marhold, K., Tajmar, M., Miotti, P., Kappenstein, C.,Batonneau, Y., Brahmi, R. and Hunter, C., “Development and Test of a Miniature Hydrogen Peroxide Monopropellant Thruster”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, AIAA Paper 2006-4550, 2006.
Scharlemann, C., Schiebl, M., Amsüss, R. and Tajmar, M., “Development of Miniaturized Green Propellant Based Mono- and Bipropellant Thrusters”, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, July 2007.
Schumb W., Satterfield C. N. and Wentworth R. L., “Hydrogen Peroxide”, Reinhold, New York, 1955, p.180.
Torre L., Pasini A., Romeo L., Cervone A. and d'Agostino L., “Performance of a Monopropellant Thruster Prototype Using Advanced Hydrogen Peroxide Catalytic Beds”, Journal of Propulsion and Power, Vol.25, No.6 , 2009
Ventura M. and Wernimont E., “Advancements in High Concentration Hydrogen Peroxide Catalytic Beds,” AIAA Paper 01- 3250, July 2001.
雷娟萍,“過氧化氫催化劑及其催化劑床技術綜述”,火箭推進(Journal of Rocket Propulsion),第6期,第31卷,2005年12月。
胡興中,“觸媒原理與應用”,高立圖書有限公司,台灣,1996。
關智光,“先導型100mN過氧化氫微推進器之自主研發”,國立成功大學航空太空工程研究所碩士論文,2006。
陳建安,“過氧化氫觸媒雙推進劑熱機引擎之研發”,國立成功大學航空太空工程研究所碩士論文,2004。
吳庭耀,“微機電製造之過氧化氫微推進器之研究”,國立成功大學航空太空工程研究所碩士論文,2009。