簡易檢索 / 詳目顯示

研究生: 蘇芳禾
Su, Fang-He
論文名稱: 特徵系統實現法於定常環境振動之模態參數識別研究
Modal Parameter Identification Using Stationary Vibration Data By Eigensystem Realization Algorithm
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 定常環境振動模態參數識別
外文關鍵詞: stationary ambient vibration, modal parameter identification
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文探討資料相關特徵系統實現法(ERA/DC)於定常環境振動模態參數識別之應用。特徵系統實現法(ERA)是利用系統脈衝響應進行模態參數識別,而ERA/DC法在ERA法之理論架構下,結合相關函數的概念於模態參數識別中。由於其原理論無法直接適用於定常環境振動響應訊號之模態參數識別,吾人針對ERA/DC法提出修改作法,在ERA/DC之理論架構下,利用響應訊號間之相關矩陣(correlation matrix),使能有效應用於定常白訊激勵之結構系統模態參數識別,進而得到系統之模態參數(例如自然頻率、阻尼比及模態振形等)。經由數值模擬結果顯示,在定常環境振動情況下本文所提之分析法可得良好的模態參數識別結果,對於雜訊的影響亦有良好之強健性。

     In this thesis, a modification to the Eigensystem Realization Algorithm using Data Correlation (ERA/DC) is presented for modal parameter identification from stationary ambient vibration data. The Eigensystem Realization Algorithm (ERA) uses impulse responses of structures for modal parameter identification, and the ERA/DC performs modal parameter identification by introducing the concept of data correlation within the framework of ERA. Since ERA/DC is not directly applicable to stationary vibration data, we proposed a modification to ERA/DC by using the correlation matrix of ambient responses of structure. Through numerical simulations, applicability of the proposed modal parameter identification method using stationary ambient vibration data is demonstrated.

    中文摘要……………………………………………………………… Ⅰ 英文摘要……………………………………………………………… Ⅱ 致謝…………………………………………………………………… Ⅲ 目錄…………………………………………………………………… Ⅳ 表目錄………………………………………………………………… V 圖目錄………………………………………………………………… VI 第一章 緒論…………………………………………………………… 1 1-1 引言…………………………………………………………… 1 1-2 模態分析與系統識別………………………………………… 2 1-3 文獻回顧……………………………………………………… 4 1-4 研究目的……………………………………………………… 7 1-5 論文架構……………………………………………………… 8 第二章 線性系統的隨機反應與相關函數法………………………… 9 2-1 隨機過程簡介………………………………………………… 9 2-2 結構系統之自由振動分析……………………………………13 2-3受定常白訊激勵之相關函數法.………………………………14 第三章 時域法模態參數識別理論……………………………………17 3-1 引言……………………………………………………………17 3-2 資料相關特徵系統實現法……………………………………18 3-3 定常環境振動之模態參數識別………………………………24 第四章 數值模擬……………………………………………… … …30 4-1 引言……………………………………………………………30 4-2 隨機外力過程的模擬…………………………………………30 4-3 鏈模型之模態參數識別………………………………………32 第五章 結論……………………………………………………………39 參考文獻 ………………………………………………………………41

    參考文獻
    [1] Beck, J. L., “Determining Models of Structures from Earthquake Records”, Report No. EERL 78-01, California Institute of Technology, Pasadena, 1978.
    [2] Beck, J. L. and Jennings, P. C., “Structural Identification Using Linear Models and Earthquake Records”, Earthquake Engineering and Structural Dynamics, Vol. 8, 1980, pp. 145-160.
    [3] Carne, T. G., Lauffer, J. P., Gomez, A. J. and Benjannet, H. “ Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation”, The International Journal of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, Oct. 1988, pp. 117-122.
    [4] Chen, C. T., Linear System Theory and Design, Holt, Rienhart, and Winston, Inc., New York, 1970.
    [5] Chiang, D.Y. and Cheng, M. S., “Model Parameter Identification from Ambient Response”, AIAA Journal, Vol. 37, 1999, pp. 513-515.
    [6] Deblauwe, R., Brown, D. L., and Allemang, R. J., “The Polyreference Time Domain Technique”, Proc. 5th Int. Modal Analysis Conf., Orlando, Fla.,1987, pp. 832-845.
    [7] Ewins, D. J., Modal Testing: Theory and Practice, Research Studies Press, 1984.
    [8] Ho, B. L. and Kalman, R. E., “Effective Construction of Linear State-Variable Models from Input/Output Data”, Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, 1965, pp. 449-459
    [9] Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direct Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, Sept. 1977, pp. 183-198.
    [10] Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp. 183-198.
    [11] James, G. H., Carne. T. G. and Lauffer, J. P., “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines.” SAND92-1666. UC-261, Sandia National Aboratories, 1993.
    [12] Juang, J. N., Applied System Identification, Prentice-Hall, Inc, 1994.
    [13] Juang, J. N., Cooper, J. E. and Wright J. R., “An Eigensystem Realization Algorithm using Data Correlations(ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, March, 1988.
    [14] Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction”, Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, Sept.-Oct. 1985, pp. 620-627.
    [15] Juang, J. N. and Pappa, R. S., “Effect of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm”, Journal of Guidance, Control and Dynamics, Vol. 9, No. 3, May-June 1986, pp. 294-303.
    [16] Kirshenboim, J., “Real vs. Complex Mode Shapes”, Proceeding of 5th International Modal Analysis Conference, London, England, 1987, pp. 1594-1599.
    [17] Newland, D. E., An Introduction to Random Vibrations and Spectral Analysis, 1975.
    [18] Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, No. 3, 1988, pp. 413-422.
    [19] Pandit, S. M. and Mehta, N. P., “Data Dependent Systems Approach to Modal Analysis via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, 1985, pp. 132-137.
    [20] Pandit, S. M. and Wu, S. M., Time Series and System Analysis with Applications, John Wiley & Sons, Inc., New York, 1983.
    [21] Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Part. 3, 1981, pp. 43-72.
    [22] Shen, F., Zheng, M., Feng Shi, D. and Xu, F., “Using The Cross-correlation Technique To Extract Modal Parameters On Response-only Data” Journal of Sound and Vibration, vol. 259, No. 5, 2003, pp. 1163-1179.
    [23] Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1, 1971, pp. 357-367.
    [24] Van Overschee, P. and De Moor, B., “Subspace Algorithms for the Stochastic Identification Problem”, Automatica, Vol. 29, No. 3, 1993, pp. 649-660.
    [25] Vold, H. and Rocklin, G. F., “The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers”, International Modal Analysis Conference Proceedings, Nov. 1982.
    [26] Zeiger, H. P. and McEwen, A. J., “Approximate Linear Realizations of Given Dimension Via Ho’s Algorithm”, IEEE Transactions on Automatic Control, Vol. AC-19, No. 2, April 1974, pp. 153-153.
    [27] 林章生,相關函數法於非定常環境振動之模態參數識別研究,碩士論文,國立成功大學航空太空工程研究所,2004.
    [28] 鄭銘勢,時域模態參數識別法之應用,碩士論文, 國立成功大學航空太空工程學研究所, 1997.

    下載圖示 校內:立即公開
    校外:2006-02-09公開
    QR CODE