| 研究生: |
曾柏程 Tseng, Po-Cheng |
|---|---|
| 論文名稱: |
超音速流場中支架凹槽駐焰器在不同燃料噴注位置和流量下的流場特性 Flow Field Characteristics of Different Fuel Injection Positions and Flow Rates in a Strut Cavity Flame Holder Configurations under Supersonic Flow in Shock Tunnel |
| 指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 震波風洞 、支架凹槽駐焰器 、燃料分布 |
| 外文關鍵詞: | shock tunnel, strut cavity flameholder, fuel distribution |
| 相關次數: | 點閱:43 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在超音速燃燒衝壓引擎中,進氣流速為超音速,氣流在燃燒室內停留時間極為短暫,因此需再燃燒室內設置駐焰器以提升燃料與氣流之混合效率。在過往支架凹槽駐焰器文獻中藉由數值模擬發現在支架後緣處的流場型態將有利於燃料深入主流場中,然而因燃料注入流場中其分布情況尚未瞭解,本研究利用支架凹槽駐焰器進行噴油實驗,觀察燃料分布現象,並與純凹槽駐焰器進行燃料分布比較。
本研究將利用震波風洞所設置的視流紋影法,並使用研究中定義的分布中心、分布比例及氣流轉折角等參數,觀測燃料的分布情況。實驗模型設計基於先前震波風洞實驗的設計,採用後掠角55°、後緣斜角35°、楔角25°及厚度10mm的支架駐焰器,搭配L/D=3、後壁面角度22.5°的凹槽駐焰器,進行不同槽內前壁面燃料噴注位置及質量流率的噴油實驗。接著,固定支架駐焰器構型,改變長深比為L/D=4、後壁面角度22.5°的凹槽駐焰器,觀察不同長深比對燃料分布的影響。最後,固定L/D=3、後壁面角度22.5°的凹槽駐焰器,比較有無支架駐焰器對於凹槽駐焰器燃料分布的差異。
研究結果得知在L/D=3的支架凹槽駐焰器中,改變燃料噴注位置對燃料分布有顯著影響。噴注孔A因位於支架駐焰器後方,不同燃料質量流率(3、4及5 g/s)下的噴注都能受到支架效應的影響,使燃料分布不僅限於凹槽駐焰器內,更能深入支架駐焰器後緣處的主流場中;而噴注孔B和C僅能使燃料分布於凹槽駐焰器內。當改變長深比由L/D=3至L/D=4並在不同質量流率(3、4及5 g/s)進行比較時,其整體燃料分布效果均不如L/D=3。這是因為氣流轉折角度不同所致,L/D=3支架凹槽駐焰器氣流轉折角較小,剪切層抬升至凹槽駐焰器後斜壁面,使槽內燃料分布較為均勻,並且能使燃料深入支架駐焰器後緣處的主流場中,從而使整體燃料分布範圍更為廣泛。L/D=3支架凹槽駐焰器與L/D=3凹槽駐焰器的氣流轉折角差異,造成燃料分布現象的不同。在L/D=3支架凹槽駐焰器在噴注質量流率3、4及5 g/s時,由於剪切層受支架效應影響抬升,使槽內迴流區擴大,並能夠讓部分燃料深入支架後緣處的主流場中。相較於純凹槽駐焰器,支架凹槽駐焰器能使燃料整體分布更均勻,並深入主流場。
Installing a flame holder in the combustion chamber can enhance the mixing efficiency between the airflow and the fuel. However, both cavity and strut flame holders each face specific challenges when used individually. Previous numerical simulations of strut cavity flame holders have shown that the flow field patterns at the rear edge of the strut are beneficial for fuel penetration into the mainstream flow. Despite this, the distribution of fuel injected into the flow field remains not fully understood. This study uses a strut cavity flame holder for fuel injection experiments to observe fuel distribution phenomena and compares these observations with those from a cavity flame holder.
The experimental model design is based on previous shock tunnel experiments, utilizing a strut flame holder with a swept angle of 55°, a trailing edge angle of 35°, and a wedge angle of 25°, paired with a cavity flame holder with an L/D ratio of 3 and a rear wall angle of 22.5°. The experiments involve varying the fuel injection positions and mass flow rates, as well as changing the length-to-depth ratio. Finally, the differences in fuel distribution between the strut cavity and the cavity flame holder are compared.
The research results indicate that in the L/D=3 strut cavity flame holder, Injector A, located at the rear of the strut flame holder, causes fuel injection at different mass flow rates to be influenced by the strut effect. This results in the fuel distribution extending beyond the cavity flame holder and into the mainstream field at the trailing edge of the strut flameholder. In contrast, Injectors B and C distribute fuel only within the cavity. When the length-to-depth ratio is increased to L/D=4, the overall fuel distribution is less effective than in L/D=3. This discrepancy is attributed to the different airflow deflection angles. Compared to the cavity flame holder, the strut cavity flame holder, due to its smaller airflow deflection angle and the uplift of the shear layer, achieves better penetration into the mainstream field.
[1]張維軒, "支架於超音速流場之噴注特性觀察," 國立成功大學航空太空工程學系碩士論文, 2020.
[2]鄧聖儒, "凹槽於馬赫 2流場之燃油噴霧分布特性研究," 國立成功大學航空太空工程學系碩士論文, 2023.
[3]沈煒智, "支架於超音速流場之燃油噴注現象與混合特性探討," 國立成功大學航空太空工程學系碩士論文, 2021.
[4]A. B. Freeborn and P. I. King, "Characterization of Pylon Effects on a Scramjet Cavity Flameholder Flowfield," AIAA Aerospace Sciences Meeting and Exhibit, 2008.
[5]J. J. C. Chaitanya D. Ghodke, Srikant Srinivasan and Suresh Menon, "Large Eddy Simulation of Supersonic Combustion in a Cavity-Strut Flameholder," AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, doi: 10.2514/6.2011-323.
[6]A. B. Freeborn, P. I. King, and M. R. Gruber, "Swept-Leading-Edge Pylon Effects on a Scramjet Pylon-Cavity Flameholder Flowfield," Journal of Propulsion and Power, vol. 25, no. 3, pp. 571-582, 2009, doi: 10.2514/1.39546.
[7]M. J. Lewis, "Significance of Fuel Selection for Hypersonic Vehicle Range," Journal of Propulsion and Power, vol. 17, no. 6, pp. 1214-1221, 2001, doi: 10.2514/2.5866.
[8]P. J. Waltrup, "Liquid-fueled supersonic combustion ramjets - A research perspective," Journal of Propulsion and Power, vol. 3, no. 6, pp. 515-524, 1987, doi: 10.2514/3.23019.
[9]J. A. Schetz, E. A. Kush, and P. B. Joshi, "Wave phenomena in liquid jet breakup in a supersonic crossflow," AIAA Journal, vol. 18, no. 7, pp. 774-778, 1980, doi: 10.2514/3.7687.
[10]M. R. Gruber, A. S. Nejad, T. H. Chen, and J. C. Dutton, "Bow shock/jet interaction in compressible transverse injection flowfields," AIAA Journal, vol. 34, no. 10, pp. 2191-2193, 1996, doi: 10.2514/3.13372.
[11]A. Ben-Yakar and R. Hanson, "Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows," Experiments in Fluids, vol. 32, no. 6, pp. 652-666, 2002, doi: 10.1007/s00348-002-0405-z.
[12]林宥騰, "凹槽駐焰器於超音速燃燒流場之設計與分析," 國立成功大學航空太空工程學系博士論文, 2022.
[13]A. Ben-Yakar and R. K. Hanson, "Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview," Journal of Propulsion and Power, vol. 17, no. 4, pp. 869-877, 2001, doi: 10.2514/2.5818.
[14]M. R. Gruber, R. A. Baurle, T. Mathur, and K. Y. Hsu, "Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors," Journal of Propulsion and Power, vol. 17, no. 1, pp. 146-153, 2001, doi: 10.2514/2.5720.
[15]K. M. Kim, S. W. Baek, and C. Y. Han, "Numerical study on supersonic combustion with cavity-based fuel injection," International Journal of Heat and Mass Transfer, vol. 47, no. 2, pp. 271-286, 2004, doi: 10.1016/j.ijheatmasstransfer.2003.07.004.
[16]M. R. Gruber, J. M. Donbar, C. D. Carter, and K. Y. Hsu, "Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow," Journal of Propulsion and Power, vol. 20, no. 5, pp. 769-778, 2004, doi: 10.2514/1.5360.
[17]F. Barnes, Q. Tu, and C. Segal, "Mixing and Mass Exchange for Cavities in Supersonic Flows," presented at the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2014.
[18]廖振傑, "開放式凹槽於超音速空氣流場之槽內噴注特性觀察," 國立成功大學航空太空工程學系碩士論文, 2018.
[19]Z. Wang, H. Wang, and M. Sun, "Review of cavity-stabilized combustion for scramjet applications," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 228, no. 14, pp. 2718-2735, 2014, doi: 10.1177/0954410014521172.
[20]蔡忠恩, "超音速流場之凹槽內外噴注特性觀察," 國立成功大學航空太空工程學系碩士論文, 2019, doi: 10.6844/NCKU201902047.
[21]Y. Su and W. Liu, "Investigation on supersonic cold flow and liquid jet over struts," J. Propul. Technol, vol. 30, no. 6, pp. 661-665, 2009.
[22]K.-Y. H. Chung-Jen Tam, Mark R. Gruber, "Aerodynamic Performance of an Injector Strutfor a Round Scramjet Combustor," AIAA Journel, 2007.
[23]W. Bao, Y. Zong, J. Chang, and T. Cui, "Effects of strut swept angle on the drag of scramjet," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 226, no. 4, pp. 455-466, 2011, doi: 10.1177/0954410011409658.
[24]C. D. C. Kuang-Yu Hsu, Mark R. Gruber, "<Mixing Study of Strut Injectors in Supersonic Flows.pdf>," AIAA 2009.
[25]J. Zhang, J. Chang, J. Ma, Y. Zhang, and W. Bao, "Local and global flame characteristics in a liquid kerosene fueled supersonic combustor equipped with a thin strut," Aerospace Science and Technology, vol. 76, pp. 49-57, 2018, doi: 10.1016/j.ast.2018.02.007.
[26]M. R. Gruber, C. D. Carter, D. R. Montes, L. C. Haubelt, P. I. King, and K.-Y. Hsu, "Experimental Studies of Pylon-Aided Fuel Injection into a Supersonic Crossflow," Journal of Propulsion and Power, vol. 24, no. 3, pp. 460-470, 2008, doi: 10.2514/1.32231.
[27]K. Y. Hsu, C. D. Carter, M. R. Gruber, T. Barhorst, and S. Smith, "Experimental Study of Cavity-Strut Combustion in Supersonic Flow," Journal of Propulsion and Power, vol. 26, no. 6, pp. 1237-1246, 2010, doi: 10.2514/1.45767.
[28]J. Miao and Y. Fan, "Influence of struts on cavity at subsonic speeds: Flow characteristics," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 233, no. 14, pp. 5369-5379, 2019, doi: 10.1177/0954410019843726.
[29]J. Miao, Y. Fan, and T. Liu, "Influence of strut on cavity at subsonic speeds: Ignition characteristics," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 234, no. 8, pp. 1369-1379, 2020, doi: 10.1177/0954410020904832.
[30]陳冠維, "粒子影像測速儀建置應用於超音速凹槽駐焰器流場量測," 國立成功大學航空太空工程學系碩士論文, 2022.
[31]廖致鈞, "超音速流場中不同後壁角度與長深比之凹槽駐焰器構型流場分析," 國立成功大學航空太空工程學系碩士論文, 2023.
[32]陳詩鎧, "超⾳速流場凹槽外噴注之駐焰特性觀察," 國立成功大學航空太空工程學系碩士論文, 2023.
[33]C. C. R. a. J. F. Driscoll, "Blowout Limits of Flames in High-Speed Airflows: Critical Damkohler Number," AIAA Journel, 2008.
校內:2029-08-14公開