簡易檢索 / 詳目顯示

研究生: 楊佳蓉
Yang, Jia-Rong
論文名稱: 齊次基底移動最小二乘法在二維彈性力學上之應用
Two-Dimensional Elastic Analysis by the Moving Least Square Method with Homogeneous Base
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 無元素法移動最小二乘法應力強度因子
外文關鍵詞: meshless method, Moving Least Square Method, stress intensity factors
相關次數: 點閱:75下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用齊次基底移動最小二乘法(Moving Least Square Method with Homogeneous Base)來分析二維彈力問題,本方法採用滿足微分方程之函數為基底函數,透過局部區域內離散點函數值資料與邊界條件以加權最小二乘法建立近似函數,最後由節點值與近似函數之一致性條件,即可求出在節點上之近似值,進而求得邊界值問題之近似解,在具有應力奇異性之區域則採用特徵函數為基底進行分析並計算應力強度因子。
    數值算例中分析懸臂梁受剪力作用、懸臂梁受均勻拉力作用以及不同裂縫情形,並探討在奇異點附近之應力集中現象,由算例分析結果得知在奇異點附近採用奇異性基底函數,僅少數節點即可完整準確分析奇異性現象。

    In this paper, we use Moving Least Square Method with Homogeneous Base to analysis two-dimensional elastic problems. This method uses the base function which satisfied the differential equations, we attempt to reduce the weighted sum of the residuals that results from the approximation to the field variable and the boundary conditions. The process lead to an interpolation which is express in terms of the nodal value of the field variable. According to the requirement of consistency of the interpolation function with its value at nodes, the point collocation technique was employed to determine the unknown nodal values, and so complete the process of determining an approximate solution to given problem. For the regions that have stress singularity, we use the singular eigen factions as the base functions and thus the stress intensity factors can be obtained directly from the solution.
    In numerical examples, we use the present method to analysis the problems of a cantilever beam subject to shear load, a cantilever beam subject to axis load and various type of crack problems. The results show that the stress singularity phenomenal can be accurate molding with a coarse distribution of node.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 緒論 1 1.1 前言 1 1.2 無元素法的發展 1 1.3 本文架構 3 第2章 異向性彈性力學公式推導 5 2.1 Stroh理論公式 5 2.2 座標軸旋轉之轉換關係 10 2.3 楔形體之特徵函數 11 2.3.1 特徵值δ之分析 11 2.3.2 特徵函數之推導 12 第3章 移動最小二乘法理論推導 18 3.1 齊次基底移動最小二乘法之推導 19 3.2 移動最小二乘法在二維異向性彈力之應用 21 3.3 混合基底函數 24 3.4 應力強度因子(Stress Intensity Factor) 25 3.5 加權函數(Weight Functions) 27 第4章 數值分析結果 28 4.1 Timoshenko邊界假設下之懸臂梁受剪力作用 28 4.2 懸臂梁受剪力作用 30 4.2.1 採用齊次基底 30 4.2.2 在奇異點附近採用奇異性基底 31 4.3 懸臂量受拉力作用 32 4.4 中央水平裂縫 33 4.5 水平邊緣雙裂縫 35 4.6 水平邊緣單裂縫 36 第5章 結論 38 參考文獻 40 自述 96

    參考文獻

    [1] L.B. Lucy(1977), “A numerical approach to the testing of the fission hypothesis”, The Astronomical Journal, 82, pp.1013-1024.

    [2] B. Nayroles, G. Touzot & P. Villon(1992), “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements”,Computational Mechanics, 10, pp.307-318.

    [3] T. Belytschko, Y. Y. Lu & L. Gu(1994), “Element-Free Galerkin Methods”, International Journal for Numerical Methods in Engineering,37,pp.229-256.

    [4] Y.Y. Lu, T. Belytschko & L. Gu(1994), “A new implementation of the element free Galerkin method”, Computer methods in Applied Mechanics And Engineering, 113, pp.397-414.

    [5] T. Belytschko, L. Gu & Y. Y. Lu(1994), “Fracture and crack growth by element free Galerkin methods”, Modelling and Simulation in Materials Science and Engineering, 2, pp.519-534.

    [6] T. Belytschko, Y. Y. Lu & L. Gu(1995), “Crack propagation by element- free Galerkin methods”, Engineering Fracture Mechanics, 51(2), pp.295-315.

    [7] T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, W.K. Liu(1996), “Smoothing and accelerated computations in the element free Galerkin method”, Journal of Computational and Applied Mathematics, 74, pp.111-126.

    [8] W.K. Liu, S. Jun & Y.F. Zhang(1995), “Reproducing Kernel Particle Methods”, International Journal for Numerical Methods in Engineering, 20, pp.1081-1106.

    [9] W.K. Liu, Y.J. Chen(1995), “Wavelet and multiple scale reproducing kernel methods”, International Journal for Numerical Methods in Fluids, 21(10), pp.901-931.

    [10] W. K. Liu, Y. Chen, C. T. Chang & T. Belytschko(1996), “Advances in multiple scale kernel particle methods”, Computational Mechanics, 18, pp.73-111.

    [11] J.S. Chen, C.T. Wu & W.K. Liu(1996), “ Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-linear Structures”, Computer methods in Applied Mechanics And Engineering, 139, pp.195-227.

    [12] Y.M. Wang, S.M. Chen & C.P. Wu(2010), “A Meshless Collocation Method Basedon the Differential Reproducing Kernel Interpolation”, Computational Mechanics, 45, pp.585-606.

    [13] S.W. Yang, Y.M. Wang, C.P. Wu & H.T. Hu(2010), “A Meshless Collocation method Meshless Collocation Method Based on the Differential Reproducing Kernel Approximation”, Computer Modeling in Engineering & Sciences, 60, pp.1-39.

    [14] S.M. Chen, C.P. Wu & Y.M. Wang(2011), “A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli–Euler beams and Kirchhoff–Love plates”, Computational Mechanics, 47, pp.425-453.

    [15] E. Oñate , S. Idelsohn , O. C. Zienkiewicz , R. L. Taylor & C. Sacco(1996), “
    A stabilized finite point method for analysis of fluid mechanics problems”, Computer methods in Applied Mechanics And Engineering, 139, pp.315-346.

    [16] T. Zhu, J.D. Zhang, S.N. Atluri(1998), “ A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems”, Computational Mechanics, 22, pp.174-186.

    [17] S.N. Atluri, T. Zhu(1998), “A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics”, Computational Mechanics, 22, pp.117-127,

    [18] S. Li, W. Hao, W.K. Liu(2000), “ Numerical simulations of large deformation of thin shell structures using meshfree methods”, Computational Mechanics, 25, pp.102-116.

    [19] 盛若磐(2000),元素釋放法積分法則與權函數之改良,近代工程計算論壇論文集,國立中央大學土木系。

    [20] T. Belytschko, Y. Krongauz, D. Oragn, M. Feleming & P. Krysl (1996), “Meshless methods: An overview and recent developments”, Computer Methods in Applied Mechanics & Engineering, 139, pp.3-47.

    [21] T.C.T. Ting(1996),Anisotropic elasticity:theory and applications,Oxford Univ.Press.,New York.

    [22] H. Tada, P.C. Paris & G.R. Irwin, (2000), The Stress Analysis of Cracks Handbook, Third Edition.

    下載圖示 校內:2013-08-03公開
    校外:2013-08-03公開
    QR CODE