簡易檢索 / 詳目顯示

研究生: 鮑朱鵬
Pao, Chu-Peng
論文名稱: 氣壓式軟模金屬轉印技術應用於奈米結構的液晶配向研究
Air Pressure Assisted Soft Mold Metal Transfer Lithography for Fabricating Nano-structures and Liquid Crystal Alignment
指導教授: 蕭飛賓
Hsiao, Fei-Bin
共同指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 76
中文關鍵詞: 金屬轉印奈米壓印奈米溝槽液晶配向配向結構大氣電漿真空電漿
外文關鍵詞: Metal transferring, Nano-imprinting, Nano-groove, Liquid crystal alignment, Alignment structure, Air plasma, Vacuum plasma
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增進液晶顯示器的影像品質,發展奈米結構的聚亞醯胺液晶配向,成為液晶顯示器業的一個重要課題。再者,聚亞醯胺材料有著優越的機械、化學穩定性,也因此在聚亞醯胺上加工結構顯得較為複雜,特別是當結構到達微奈米等級的尺寸時。在本篇論文中,我們開發一種創新且有效的結構化聚亞醯胺方法。為了成本考量,我們先製造可耐久使用的PBS、PUA母模,再利用這些母模翻製壓印模仁。針對此一結構化舉亞醯胺方法,我們先利用金屬轉印的方式將壓印模仁上的金屬轉印至事先旋塗在聚亞醯胺上的高分子光阻材料。 金屬轉印至光阻後,以金屬當乾式蝕刻遮罩,依序對以下的光阻、聚亞醯胺進行蝕刻。最後我們將聚亞醯胺上的光阻以濕式蝕刻的方式去除,即可得到基板上的聚亞醯胺結構。實驗結果證明,我們可以精確地製做出聚亞醯胺結構。結構最小線寬/周期達到60/120 nm,而最大面積則是大於2 × 2 cm2。這個方法的優點在於它的低壓、低溫、小線寬、高成功率及應用簡單的特性。最重要的,此種方法可以在奈米尺度中,應用在許多較難加工的高分子上,而這種特性是其它加工方式所不具有的。
    除此以外,對於液晶的配向機制,目前有兩大主流解釋,第一種是微奈米溝槽的配向,第二種則是表面化學式配向。為了探討這兩種配向機制間的關係,我們製做了三種液晶盒,並藉由個別分析液晶盒特性的方式來獲得其間配向資訊。第一種是只包含純粹奈米聚亞醯胺結構的液晶盒,第二種包含了經真空電漿掃描過的奈米聚亞醯胺結構,而第三種則是經大氣電漿掃瞄過的奈米聚亞醯胺結構。實驗結果證明,不管是結構或是表面化學式配向,均有其獨自的配向效果。實驗結果也證實,如果不考慮抽真空帶來的製程時間負擔,以奈米結構加真空電漿處理過的聚亞醯胺當液晶配向的方式,具有製做高影像品質液晶顯示器的無限潛力。另外,利用掃過大氣電漿,線寬/週期約略在60/120 nm奈米結構時,比起真空電漿所掃過的奈米結構配向,具有相似的配向效果。並因大氣電漿不需額外抽真空步驟,所以同時兼具廉價、高效率的生產潛能。因此,利用大氣電漿掃描過、線寬/週期約略60/120 nm的奈米聚亞醯胺結構,去生產高解析度的液晶顯示器,比起其他方式,具有更有效、更有潛能的優勢。

    To improve the image quality of liquid crystal displays (LCD), the development of nano-structures liquid crystal (LC) alignments, which are kinds of polyimides, has been an important factor in LCD industries. Moreover, polyimide materials are well known for their excellent mechanical and chemical stabilities which, as an adverse consequence, make their fabrication processes much more difficult, especially in micro- and nano-scales. In this thesis, we demonstrate an innovative and powerful method for fabricating nano-grooves on polyimides. To down the cost of process, we fabricated the PBS mold, PUA sub-master mold to replicate the PDMS stamp, PUA/PDMS stamp and hPDMS stamp. To pattern the PI structures, we adopted a metal transferring approach to transfer a patterned metal film from a stamp to a polymer layer coated on a polyimide layer. The patterned double polymer layers are then dry etched using the transferred metal pattern as an etching mask. Finally, polyimide structures are obtained by lifting off the top polymer layer and the metal film through wet etching. Experiments have been carried out and important parameters to achieve high pattern-transformation fidelity are determined. Fine structures of polyimides with linewidth/pitch of 60/120 nm and a total patterned area of 2 × 2 cm2 are demonstrated. Advantages of this method include low-temperature, low contact pressure, small feature size, high throughput and easiness in implementation. Most importantly, it is applicable for a large number of tough polymers which are difficult to deal with by other methods in terms of nano-fabrication.
    Furthermore, the phenomenon of LC alignment has two major acceptable mechanisms, one is micro/nano-groove and the other is surface chemical bonding orientations. To investigate the relations between this two alignment mechanism, three kinds of liquid crystal cell samples had been packaged. The first is pure nano-groove alignment structure, the second one is nano-groove with vacuum plasma swept alignment and the final is the nano-groove with air plasma swept alignment. Experiments have been carried out that both the nano-groove and chemical orientation have their own capabilities to anchor LC. Experiments results also show that the alignment induced by the combination of nano-groove and vacuum plasma has a good potential to fabricate a high resolution display for LCD industry if the vacuum condition is not a significant consideration. Moreover, the utilization of air plasma swept nano-groove with linewidth/pitch are 60/120 nm is a lower cost and more efficient approach than vacuum plasma swept one since not only the unnecessary needing of vacuum condition but also the similar alignment result as the vacuum plasma treated one. Hence, the approach combined air plasma and nano-groove with linewidth/pitch are 60/120 nm is more powerful and potential to produce a high quality LCD than other approaches.

    Table of Contents Abstract (Chinese)……………………………………………………………i Abstract (English)…………………………………………………………iii Acknowledgement…………………………………………………………v Table of Contents……………………………………………………………vi List of Figures……………………………………………………………viii List of Tables………………………………………………………………xii Nomenclatures……………………………………………………………xiii Chapter 1 Introduction………………………………………………1 1.1 Background…………………………………………………………1 1.2 Literature review……………………………………………………2 1.2.1 Review of nano-imprinting lithography………………………2 1.2.2 Review of liquid crystal alignment mechanisms………………8 1.3 Motivation…………………………………………………………12 1.4 Thesis objectives and organization…………………………………13 Chapter 2 Preparations of the imprinting molds and stamps…………………………………………………………15 2.1 Preparation of the Si master molds…………………………………15 2.2 Preparation of the PBS master molds………………………………18 2.3 Preparation of the PUA sub-master molds………………………23 2.4 Preparation of the PDMS imprinting stamps………………………28 2.5 Preparation of the PUA/PDMS imprinting stamps……………29 2.6 Preparation of the hPDMS imprinting stamps…………………32 2.7 Summary………………………………………………………40 Chapter 3 Soft mold and air pressure assisted metal transfer lithography for fabricating liquid crystal alignments………………………………………………………………………………………………………………………42 3.1 Air pressure loading system………………………………………42 3.2 LC alignment structures patterning process………………43 3.3 LC alignment structures patterning results……………46 3.4 Summary…………………………………………………………56 Chapter 4 Nano-groove and plasma enhanced TN-LC cells……58 4.1 Introduction………………………………………………………58 4.2 Experimental details………………………………………………58 4.3 Optic-electric characteristics of TN-LC cells……………61 4.3.1 Pure nano-groove and plasma alignments………………63 4.3.2 Nano-groove based plasma alignments………………………64 4.4 Summary………………………………………………………69 Chapter 5 Conclusions and future works……………………………70 5.1 Conclusions………………………………………………………70 5.2 Future works………………………………………………………71 References…………………………………………………………………72

    [1] J.V. Haaren, “Wiping out dirty displays”, Nature 411, 29 (2001).

    [2] M. Suzuki, T. Maruno, F. Yamamoto and K. Nagai, “Surface roughness of rubbed polyimide film for liquid crystals by scanning tunneling microscopy”, Journal of Vacuum Science and Technology A 8, 631 (1990).

    [3] D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal”, Physical Review Letters 28, 1683 (1972).

    [4] W. M. Gibbons, P. J. Shannon, S. T. Sun and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light”, Nature 351, 49 (1991).

    [5] M. Schadt, H. Seiberle and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles”, Nature 381, 212 (1996).

    [6] H. Hah et al., “Effect of the shape of imprinted alignment layer on the molecularorientation of liquid crystal”, Materials Science and Engineering C 27, 798 (2007).

    [7] J. B. Kim et al., “The Directional Peeling Effect of Nanostructured Rigiflex Molds on Liquid-Crystal Devices: Liquid-Crystal Alignment and Optical Properties”, Advanced Functional Materials 18, 1340 (2008).

    [8] C. Y. Chiu and Y. C. Lee, “Fabrication of polyimide micro/nano-structures based on contact-transfer and mask-embedded lithography”, Journal of Micromechanics and Microengineering 19, 105001 (2009).

    [9] Y. Yi, M. Nakata, A. R. Martin, and N. A. Clark, “Alignment of liquid crystals by topographically patterned polymer films prepared by nanoimprint lithography”, Applied Physics Letters 90, 163510 (2007).

    [10] E. K. Lee and J. H. Kim, “Multistability of nematic liquid crystals realized on microscopic orientation patterns”, Journal of Applied Physics 102, 036102 (2007).

    [11] D. R. Chiou, K. Y. Yeh and L. J. Chen, “Adjustable pretilt angle of nematic 4-n-pentyl-4_-cyanobiphenyl on self-assembled monolayers formed from organosilanes on square-wave grating silica surfaces”, Applied Physics Letters 88, 133123 (2006).

    [12] M. Behdani et al., “Alignment of liquid crystals with periodic submicron structures ablated in polymeric and indium tin oxide surfaces”, Applied Physics Letters 82, 2553 (2003).

    [13] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters 67, 21 (1995).

    [14] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science and Technology B 14, 6 (1996).

    [15] S. W. Youn, T. Noguchi, M. Takahashi and R. Maeda, “Dynamic mechanical thermal analysis, forming and mold fabrication studies for hot-embossing of a polyimide microfluidic platform”, Journal of Micromechanics and Microengineering 18, 045025 (2008).

    [16] B. Cui, Y. Cortot and T. Veres, “Polyimide nanostructures fabricated by nanoimprinting lithography and its application”, Microelectronic Engineering 83, 906 (2006).

    [17] I. T Pai, I. C. Leu and M. H. Hon, “Nanostructures prepared on polyimide films by nanoimprinting with the assistance of residual solvent”, Journal of Micromechanics and Microengineering 16, 2192 (2006).

    [18] Y. C. Lee and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching”, Journal of Micromechanics and Microengineering 18, 075013 (2008).

    [19] J. Stohr et al., “Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order”, Science 292, 2299 (2001).

    [20] S. Ishihara, H. Wakemoto, K. Nakazima, and Y. Matsuo, “The effect of rubbed polymer films on the liquid crystal alignment”, Liquid Crystals 4, 669 (1989).

    [21] M. Lu, “Liquid Crystal Orientation Induced by Van der Waals Interaction”, Japanese Journal of Applied Physics 43, 8156 (2004).

    [22] K. C. Kim et al., “Novel Alignment Mechanism of Liquid Crystal on a Hydrogenated Amorphous Silicon Oxide”, Langmuir 21, 11079 (2005).

    [23] C. Y. Lee et al, “Argon Plasma Beam Scanning Processes on Polyimide Films for Liquid Crystal Alignment”, Japanese Journal of Applied Physics 47, 226 (2008).

    [24] G. Y. Jung et al., “Vapor-Phase Self-Assembled Monolayer for Improved Mold Release in Nanoimprint Lithography”, Langmuir, 21, 1158 (2005).

    [25] K. Han, K. S. Kang and J. Kim, “Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold”, Journal of Micromechanics and Microengineering 19, 035010 (2009).

    [26] Kyung M. Choi and John A. Rogers, “A Photocurable Poly(dimethylsiloxane) Chemistry Designed for Soft Lithographic Molding and Printing in the Nanometer Regime”, Journal of the American Chemical Society 125, 4060 (2003).

    [27] C. Y. Lee, “Mask Embedded Nano-Imprinting Technology for the Fabrication of Large-Area Micro/Nano-Structures”, master thesis of NCKU, (2009).

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE