簡易檢索 / 詳目顯示

研究生: 李又儒
Lee, You-Ru
論文名稱: 平面精密磁浮壓印平台之設計
Design of Two-Dimensional Precision Embossing Platform with Magnetic Actuator
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 75
中文關鍵詞: 壓印平台電磁致動器奈米平板壓印
外文關鍵詞: nano imprint, magnetic actuators, embossing platform
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   伴隨著微機電技術的不斷進步,高分子的微米及奈米製造科技在光電、生化等領域中發展了許多的應用,而在其微成品製造技術中,傳統熱壓成形技術在結合了微機電的LIGA製程後,轉變成為熱壓平板印刷,亦即奈米平板壓印,可用來複製奈米結構,因而成為相當重要的關鍵技術。在熱壓成型的過程中,影響微結構最大的因素就是壓印壓力、壓印溫度、壓印時間等,此外熱壓機台的精度與模具間的平行度也影響到熱壓後元件或微結構的品質。故本論文研究係利用電磁致動器做為壓印平台的驅動裝置,再結合雷射位移感測器與回授控制來修正平台的定位誤差,藉以提高平台與模具間的平行度,期望藉著上述平台之實現,進而提昇微結構的品質,並達到縮小微結構上的表面粗度。在本文中,首先針對與本研究相關之基本電磁理論及磁浮系統作一詳盡的介紹,再透過理論及實驗量測獲得精確的電磁鐵磁力模型,其後,將平台簡化成為一利用電磁鐵控制且具端點質量的懸臂樑,再對整個系統進行性能分析及控制器的設計,輔以電腦模擬來進行系統評估,之後以實驗來驗證系統設計的可能性,結果發現系統具有快速反應、且能達到次微米的定位精度,最後利用端點控制的設計架構,再結合立式鳩尾滑座的機構,完成了一具長運動行程、高定位精度的壓印平台。

      With the progress of MEMS technology, micro and nano fabrication technology of polymer have developed many applications in electro- optical science and biochemistry area. After combined with LIGA process, the nano imprint technology was developed to fabricate nano structures. This process is used to replicate nano structure, and becomes a very important key technology. During the nano imprint process, the most important factors are those as printing pressure, printing temperature, printing time, and so on. Besides, the imprinting machine’s precision and parallelism also affect the quality of finished products. In this study, we use magnetic actuators to drive the embossing platform and the laser displacement meter with feedback control to reduce the position error, so as to increase the parallelism between molds. By the realization of the platform, we expect to increase the quality of micro structure and decrease the surface roughness in imprinting process. A simplified platform made of a cantilever beam with a tip mass and electromagnet was first studied. Based on experimental results, we find that the system can rapidly response and reach submicro position accuracy. Based on the former concept, an embossing platform with large traveling range and precision position was designed.

    中文摘要 英文摘要 誌謝 目錄...........................................................Ⅰ 表目錄.........................................................Ⅳ 圖目錄.........................................................Ⅴ 第一章、緒論....................................................1 1-1 前言..................................................1 1-2 文獻回顧..............................................2 1-2.1 奈米製造技術....................................2 1-2.2 次世代微影技術..................................2 1-2.3 奈米轉印微影術..................................3 1-2.4 壓印平台的發展..................................4 1-3 研究動機與目的........................................5 1-4 論文架構..............................................6 第二章、電磁致動器模型推導與校正................................7 2-1 磁浮系統的發展........................................7 2-1.1 磁浮系統的應用..................................7 2-1.2 磁浮系統介紹....................................7 2-2 電磁致動器數學模型....................................9 2-2.1 磁路分析........................................9 2-2.2 模型推導.......................................10 2-3 電磁致動器校正.......................................14 2-3.1 電磁致動器校正理論.............................15 2-3.2 致動器校正實驗.................................15 第三章、平台控制系統設計.......................................20 3-1 簡化平台模型.........................................20 3-2 系統動態方程式.......................................21 3-3 系統模擬.............................................22 3-4 懸臂樑端點定位實驗...................................26 3-4.1 電壓轉電流放大器...............................26 3-4.2 實驗設備.......................................28 3-4.3 實驗步驟.......................................28 3-4.4 實驗結果.......................................29 3-5 壓印平台設計.........................................30 3-5.1 設計概念.......................................30 3-5.2 電磁致動器的改良...............................32 第四章、結論與建議.............................................33 參考文獻.......................................................37 自述 著作權聲明

    [1] N.S.Ong ,Y.H.Koh and Y.Q.Fu,“ Microlens array produced using hot embossing
    process,”Microelectronic Engineering Volume: 60, Issue: 3-4, April, 2002,
    pp.365-379.
    [2] Lee,Gwo-Bin ;Chen,Shu-Hui ;Huang,Guan-Ruey ; Sung,Wang-Chou; Lin,Yen-Heng,
    “Microfabricated plastic chips by hot embossing methods and their applications
    for DNA separation and detection”, Sensors and Actuators B: Chemical Volume:
    75, Issue: 1-2, April 30, 2001, pp. 142-148
    [3] Holger Becker,Ulf Heim,“Hot embossing as a method for the fabrication of
    polymer high aspect ratio structures” Sensors and Actuators A: Physical
    Volume: 83, Issue: 1-3, May 22, 2000, pp. 130-135.
    [4] G.G.Wallace ,M.Smyth ,H.Zhao ,“Conducting electroactive polymer-based
    biosensors”Trends in analytical chemistry,18,4(1999) 245-251.
    [5] M.Goretty Alonso-Amigo “ Polymer Microfabrication for Micro- arrays,
    Microreactors and Microfluidics” Journal of the Association for Laboratory
    Automation Volume: 5,Issue: 6, December 1, 2000, pp. 96-101.
    [6] 鄭瑞庭等,“奈米模具製作與應用現況”,機械工業, 243 民92.06 頁142-151
    [7] 林家弘 許嘉峻,“奈米製造技術的新契機--奈米轉印微影術及其設備發展現況”, 機械工
    業, 243 民92.06 頁130-141
    [8] S.Y.Chou, P.R.Krauss, P.J.Renstrom,“Imprint of sub-25 nm vias and trenches in
    polymers,”Applied Physics Letter, Vol 67(21), pp.3114-3116,1995
    [9] Tomi Haatainena, et al,“Step & Stamp Imprint Lithography using a Commercial
    Flip Chip Bonder,”SPIEs 25th Annual International Symposium of
    Microlithography,2000
    [10] M.Colburn,et al.,“Step and Flash Imprint Lithography:A New Approach to High
    Resolution Patterning.”,Proc.SPIE:Emerging Lithographic Technologies III,
    1999.3676(I):p.379
    [11] Xia,Y.;Whitesides,G.M.;Angew.Chem.Int.ed.1998,37,550-75
    [12] U.S. Patent No.5993189, Apparatus for molding microsystem structures.
    [13] WO 01/42858 A1, Device and method in connection with the production of
    structures.
    [14] WO 01/69317 A1, Device for transferring a pattern to an object
    [15] U.S. Patent No.6482742 B1, Fluid pressure imprint lithography
    [16] 涂文超,“磁浮系統之製作分析與強建控制器之設計”,國立成功大學工程科學研究所碩
    士論文,民國85年
    [17] 陳政宏,“一種新型磁浮控制系統之研究”國立成功大學電機工程研究所碩士論文,民國
    88年
    [18] Tsih C.Wang and Yeou-Kuang Tzeng,“A New Electromagnetic Levitation System
    for Rapid Transit and high Speed Transportation”IEEE Trans.on Magnetics,
    Vol.30 , No.6 , pp . 4734-4736,NOV.1994.
    [19] 李家康,“混合磁浮避震系統的設計與實現”,國立成功大學航空太空工程研究所碩士論
    文,民國90年
    [20] 近角聰信,張煦,李學養,“磁性物理學”, 臺北巿 :聯經,民71
    [21] D. L. Trumper, Sean M. Olson, and P . K. Subrahmanyan ,“ Linearizing
    Control of Magnetic Suspension System”IEEE,Transactions on Control Systems
    Technology , Vol.5, No.4, pp.427-438, July,1997
    [22] T.Poovey,M.Holmes,and D.Trumper,“A Kinematically-coupled magnetic bearing
    calibration fixture”Precision Engineering , Vol.16 No.2,pp.99-108,Apr.1994
    [23] Singiresu S. Rao “Mechanical Vibrations”Purdue University.
    [24] Yung-Tien Liu, Tai-Kun Huang, Rong-Fong Fung “Vibration Control of a
    Catilever Beam with a Tip Mass by an Electro - magnetic Actuator ”Department
    of Mechanical & Automation Engineering
    [25] Sedra,Smith,“Microelectronic Circuits”Foruth Edition
    [26] 何正中 “等效微積電靜電致動器之控制器設計與實驗驗證”國立成功大學機械工程學系
    碩士論文,民國90年
    [27] K.S. Chen ,”A Spring-Dominated Regime Design of a High Load Capacity,
    Electromagnetically Driven X-Y-θ Stage,”Master Thesis, Department of
    Mechanical Engineering,Massachusetts Institute of Technology, Cambridge, MA,
    june,1995.

    下載圖示 校內:立即公開
    校外:2004-07-26公開
    QR CODE