簡易檢索 / 詳目顯示

研究生: 黃詣涵
Huang, I-Han
論文名稱: 氫鍵作用力與結晶動力對聚丁二酸二乙酯 結晶形態之影響
Effects of Hydrogen Bonding and Growth Kinetics on Crystal Morphology of Poly(ethylene succinate)
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 相容性聚丁二酸二乙酯樹枝狀結晶
外文關鍵詞: miscibility, Poly(ethylene succinate), dendrite
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用偏光顯微鏡(polarized optical-light microscopy)、微分掃描熱卡計(differential scanning calorimetry)、傅立葉紅外線光光譜儀(Fourier-transformed infrared spectroscopy) 掃描式電子顯微鏡(scanning electron microscopy)及原子力顯微鏡(atomic force microscopy) 探討poly(ethylene succinate) (PESu) 與具有多個酚基的天然高分子tannic acid (TA) 摻合體之相容性、分子間作用力以及兩分子間形成的強作用力對PESu球晶形貌的影響。
    PESu/TA摻合系統為一相容系統,且兩分子間具有強氫鍵作用力。此外,PESu的球晶形貌於TA摻入後與PESu形成的強作用力有明顯的改變,且使得PESu的球晶成長速率大幅下降。PESu於結晶溫度為70 oC時形成馬爾他十字球晶,然而當摻入10wt% TA時,PESu的球晶形貌由馬爾他十字球晶轉變為楓葉狀,且當摻入20wt% TA時進一步轉變為海草狀。此外,PESu的球晶形貌也會隨著高分子膜厚改變而改變。PESu在結晶溫度於70oC時,其球晶形貌會隨著膜厚下降,由馬爾他十字球晶轉變為楓葉狀,當膜厚低於1m時,轉變為樹枝狀。此現象與TA含量上升有相同的趨勢,TA加入後所呈現的球晶形貌會與純PESu在膜厚較低時呈現的球晶形貌類似。PESu於摻入20wt% TA後形成的海草狀結晶是由菱形單晶規則排列而成。此外,於樹枝狀結晶中,菱形單晶會以左螺旋或右螺旋的方式排列。利用SEM觀察薄膜斷截面,海草狀球晶晶板與玻片呈102o,推測海草狀球晶是由α-form單晶排列而成。

    Specific intermolecular interactions, miscibility and spherulite morphology were investigated in the blend of poly(ethylene succinate) (PESu) and tannic acid (TA) using differential scanning calorimetry (DSC), polarized optical-light microscopy (POM), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM).
    PESu/TA blend is proved to be miscible in melt and amorphous glassy states. In addition, PESu/TA blends exhibit specific intermolecular hydrogen bonding interactions between the carbonyl groups of PESu and the hydroxyl groups of TA. Such strong intermolecular hydrogen bonding interactions shows great influence on the spherulitic morphology of PESu in blends. PESu shows normal Maltese-cross spherulite and upon blending with TA, the spherulite morphology of PESu changes to leaf-like (TA=10wt%) and then changes to seaweed morphology (TA=20wt%). Film thickness also influences the spherulite morphology of PESu. With the decrease of PESu film thickness, the normal Maltese-cross spherulite of PESu becomes leaf-like. The trend in the change of spherulite morphology of PESu upon blending with TA is similar to that of PESu with decreasing film thickness. PESu shows dendrite morphology in blend with 20wt% TA and in low film thickness= 1 m. The seaweed morphology in PESu/TA=80/20 is composed of regular arrangement of lozenge single crystals. The dendrite in PESu/TA=80/20 is composed of right-handed and left-handed lozenge plate arrangement of spiral growth crystals.

    總目錄 中文摘要 I 英文摘要 II 總目錄 III 表目錄 IV 圖目錄 VI 第一章 簡介 1 第二章 原理 12 2-1 高分子的相容性 15 2-2 玻璃相轉移行為 17 2-3 平衡熔點下降 18 2-4 球晶成長理論 19 2-5 樹枝狀(dendrite)結構晶體成長理論 21 2-6 Keith-Padden Theory of Spherulitic Crystallization 24 第三章 實驗 3-1 實驗所用的高分子及試藥 26 3-2 實驗儀器及試樣製備 27 第四章 結果與討論 4-1 PESu / TA兩成份摻合系統的相容性討論 30 4-2 PESu / TA兩成份摻合系統作用力之研究 39 4-3 PESu / TA 的摻合系統結晶行為之研究 42 4-3.1結晶形貌及結晶動力之探討 42 4-3.2特殊結晶形貌與結晶動力探討 51 4-3.3 膜厚對結晶形貌之探討 51 4-4 PESu/TA 80/20摻合系統之特殊球晶形貌觀察 59 4-4.1 利用AFM進行觀察 59 4-4.2 利用SEM進行觀察 68 4-4.3 利用溶劑蝕刻探討 70 第五章 結論 72 參考文獻 73

    1. Bank, M.; Leffingwell, J.; Thies, C. Macromolecules 1971, 6, 43.
    2. Nishimoto, M.; Keskkula, H.; Paul, D. R. Polymer 1991, 32, 272.
    3. Walsh, D. J.; Higgins, J. S.; Maconndchie, A.; “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
    4. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
    5. Coleman, M. M.; Moskala, E. J. Polymer 1983, 24, 251.
    6. Varnell, D. F.; Moskala, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phys. Ed. 1983, 23, 658.
    7. Eisenberg, A.; Hara, M. Polym. Eng. Sci. 1984, 24, 1306.
    8. Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prud’homme, R. E. J. Polym. Sci. Phys. Ed. 1983, 21, 233.
    9. Rodriguez-Parada, J. M.; Percec, V. Macromolecules 1986, 19, 55.
    10. Fischezr, E. W. Naturforsch. 1957, 12, 753.
    11. Till, P. H. J. Polym. Sci. 1957, 17, 447.
    12. Keller, A. Philos. Mag. 1957, 2, 1171.
    13. Takiyama E, Harigai N, Hokari T. Production of Aliphatic Polyester. Japanese Patent No.H5-70566, 1993.
    14. Takiyama E, Seki S. Production of Aliphatic Polyester. Japanese Patent No.H5-70572, 1993.
    15. Takiyama E, Fujimaki T, Seki S, Hokari T, Hatano Y. Method for Manufacturing Biodegradable High Molecular Aliphatic Polyester. US Patent No.5310782, 1994.
    16. Takiyama E, Hatano Y, Fujimaki T, Seki S, Hokari T, Hosogane T, Harigai N. Method of Producing a High Molecular Weight Aliphatic Polyester and Film Thereof. US Patent No.5436056, 1995.
    17. Mochizuki M.; Mukai K.; Yamada K.; Ichise N.; Murase S.; Iwaya Y. Macromolecules 1997, 30, 7403.
    18. Cao, A.; Okamura, T.; Nakayama, K.; Inoue, Y, Masuda, T. Polym. Degrad. Stab. 2002, 78, 107.
    19. Zheng, Q.; Shangguan, Y. G.; Yan, S. K.; Song Y. H.; Peng, M.; Zhang, Q. B. Polymer 2005, 46, 3163.
    20. Wurm, A.; Merzlyakov, M.; Schick, C. Colloid Polym. Sci. 1998, 276, 289.
    21. Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 409.
    22. Wang, J.; Cheung, M. K.; Mi, Y. Polymer 2002, 43, 1357.
    23. Chen, H. L.; Wang, S. F. Polymer 2000, 41, 5157.
    24. Lu, H. Y.; Chen, M.; Chen, C. H.; Lu, J. S.; Hoang, K. C.; Tseng, M.; J. Appl. Polym. 2010, 116, 3693.
    25. Yen, K. C., Woo, E. M. Polym. Bull. 2009, 62, 225.
    26. 顏凱宸,“聚酯類高分子與其摻合體之樹枝狀結晶形貌與相容性探討”,成功大學化學工程所,碩士論文,2007.
    27. Yen, K. C.; Mandal, T. K.; Woo, E. M. J. Biomed. Mater. Res., Part-A, 2008, 86, 701.
    28. Gunaratne, L. M.; Shanks, R. A. Eur. Polym. J. 2005, 41, 2980.
    29. Kwei, T. K. J. Polym. Sci. Polym. Lett. 1984, 22, 307.
    30. Xing, P. X.; Dong, L. S.; An, Y. X.; Feng, Z. L.; Avella, M.; Martuscelli, E. Macromolecules 1997, 30, 2726.
    31. Li, J. ; He, Y. ; Ishida, K.; Yamane, T.; Inoue, Y. Polym. J. 2001, 33, 773.
    32. He, Y.; Asakawa, N.; Li, J.; Inoue, Y. J. Appl. Polym. Sci. 2001, 82, 640.
    33. He, Y.; Asakawa,N.; Inoue, Y. J. Polym. Sci., Part B: Polym Phys 2000, 38, 2891.
    34. Zhang, L. L.; Goh, S. H.; Lee, S. Y. J. Appl. Polym. Sci. 1999, 74, 383.
    35. Li, J.; He, Y.; Inoue, Y. J Polym Sci, Part B: Polym Phys 2001, 39, 2108.
    36. He, Y.; Asakawa, N.; Inoue, Y. J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 1848.
    37. Chen, N. P.; Hong, L. Polymer 2002, 43, 1429.
    38. He, Y.; Asakawa, N.; Inoue, Y. Macromol. Chem. Phys. 2001, 202, 1035.
    39. Zhang, X.; Takegoshi, K.; Hikichi, K. Macromolecules 1991, 24, 5756.
    40. Lee, L. T.; Woo, E. M.; Hou, S. S.; Forster, S. Polymer 2006, 47, 8350.
    41. Hu, Z. H.; Huang, F.; Zhang, B.; Du, T. H. Langmuir 2004, 20, 3271.
    42. Ma, Y.; Hu,W. B.; Reiter, G. Macromolecules 2006, 39, 5159.
    43. Wang, Y.; Chan, C. K.; Ng, L. L. Macromolecules 2008, 41, 2548.
    44. Kikkawa, Y.; Abe, H.; Fujita, M.; Iwata, T.; Inoue, Y. Doi, Y. Macromol. Chem. Phys. 2003, 204, 1822.
    45. Kikkawa,Y.; Abe, H.; Iwata, T.; Inoue, Y.; Doi, Y. Biomacromolecules 2001, 2, 940.
    46. Jradi, K.; Bistac, S.; Schmitt, M.; Schmatulla, A.; Reiter, G. Eur. Phys. J. E 2009, 29, 383.
    47. Lei, Y. G.; Chan, C. M.; Li, J. X.; Ng, K. M.; Wang, Y.; Jiang, Y.; Li, L. Macromolecules 2002, 35, 6751.
    48. Li, L.; Chan, C. M.; Yeung, K. L.; Li, J. X.; Ng, K. M.; Lei, Y. Macromolecules 2001, 34, 316.
    49. Brener, E.; Müller-Krumbhaar, H.; Temkin, D. Europhys. Lett. 1992, 17, 535.
    50. Brener, E.; Müller-Krumbhaar, H.; Temkin, D. Phys. Rev. E 1996, 54, 2714.
    51. Tadahisa, I.; Yoshiharu, D.; Saitama, W. S.; Keiichi I.; Yasuhiko, Y. Macromolecules 2001, 34, 7343.
    52. Wittmann, J. C.; Lotz, B. J. Polym. Sci., Part B: Polym. Phys. 1985, 23, 205.
    53. Iwata, T.; Doi, Y. Macromolecules 2000, 33, 9535.
    54. Saracovan, I.; Cox, J. K.; Revol, J. F.; Manley, R. St. J.; Brown, G. R. Macromolecules 1999, 32, 717.
    55. Lu, J. M.; Qiu, Z. B.; Yang, W. T. Polymer 2007, 48, 4196.
    56. Qiu, Z. B.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T., Polymer 2004, 45, 4515.
    57. Yang, H.; Li, Z. S.,; Qian, H. J.; Yang, Y. B.; Zhang, X. B.; Sun, C. C. Polymer 2004, 4, 453.
    58. Na, Y. H.; Ye, H.; Asakawa, N.; Yoshie, N.; Inoue, Y. Macromolecules 2002, 35, 727.
    59. Zhang, L. L.; Goh, S. H.; Lee, S.Y.; Hee, G. R. Polymer 2000, 41, 1429.
    60. Walsh, D. J,; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers: Boston, 1985.
    61. Rameau, A.; Gallot, Y.; Marie, P.; Farnoux, B. Polymer 1989, 30, 386.
    62. Urzua, M.; Leiva, A.; Alegria, L.; Gargallo, L.; Radic, D. Int. J. Polym. Mater. 2007, 5, 687.
    63. Joel, R. “Polymer science and technology” Prentice Hall Professional Technical Reference, Upper Saddle River, NJ, 2003.
    64. Young, R. J.; Lovell, P. A. “Introduction to polymer” Chapman&Hall, 1991.
    65. Paul, D. R.; Newman, S. “Polymer Blends”, Academic Press Inc, 1987.
    66. Sperling, L. H. “Introduction to physical polymer science”, John Wiley&Sons, 1992.
    67. Flory, P. J. J. Am. Chem.Soc. 1965, 86, 1833.
    68. Flory, P. J. J. Disc uss Faraday Soc. 1970, 49, 7.
    69. Coleman, M. M.; Graf, J. F.; Painter, P. C. “Specific Interactions an the Miscibility of Polymer Blends” Technomic Publishing, Lancaster, PA, 1991.
    70. Li, W.; Yan, R.; Jiang, B. Polymer 1992, 33, 899.
    71. Fox, T. G.; Loshaek, S. J.Polym. Sci 1995, 15,371.
    72. Fox, T. G. Bull. Am. Phys. Soc. 1956, 2, 123.
    73. Wang, Z.; An, L.; Jiang, W. B.; Jiang, X.; Wang, J. J. Polym. Sci.,Part B:Polym. Phys. 1999, 37, 2682.
    74. Gordon, M.; Taylor, J. S. J.Appl. Chem 1952, 2, 493.
    75. Kwei, T. K.; Pearce, E. M.; Pennacchia, J. R.; Charton, M. Macromolecules 1987, 20, 1174.
    76. Ren, M.; Chan, Q.; Song, J.; Zhang, H.; Sun, X.; Mo, Z.; Zhang, H.; Jiang,L. J. Polym. Sci.: Polym. Phys. 2005, 43, 553.
    77. Sasaki, T.; Sunago, H.; Hoshikawa, T. Polym. Eng. Sci., 2003, 43,629.
    78. Rana, S. K. J. Adv. Polym. Sci. 1996, 61, 951.
    79. Aggarwal, S. L.; Marker, L.; Kollar, W. L.; Geroch, R. J. Polym. Sci.:A-2. 1966, 4, 715.
    80. Wunderlich, B.; Macromolecular Physics, Vol. 2, Academic Press, New York, 1976.
    81. Keith, H. D.; Padden, F. J. Jr. J. Appl. Phys. 1964, 35, 1286.
    82. Keith, H. D.; Padden, F. J. Jr. J. Appl. Phys. 1963, 34, 2409.
    83. Martuscelli, E.; Martuscelli, E.; Palumbo, R.; Kryszewski, M. ”Polymer blends: processing, morphology and properties” Vol. 23. Plenum Press: New York, 1979.
    84. Papageorgiou, G. Z.; Bikiaris, D. N. Polymer 2005, 46, 112081.
    85. Papageorgiou, G. Z.; Bikiaris, D. N. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 584.
    86. Kwei, T. K. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 307.
    87. Maldonado-Santoyo, M.; Ortiz-Estrada, C.; Luna-Barcenas, G.; Sanchez, I. C.; Cesteros, L. C.; Katime, I.; Nuno-Donlucas, S. M. J. Polym Sci Part B:Polym. Phys. 2004, 42, 636.
    88. Chang, L. L.; Woo, E. M. J. Polym. Sci. Part B: Polym Phys. 2003, 41, 772.
    89. Schönherr, H.; Frank, C.W. Macromolecules 2003, 36, 1188.
    90. Beers, K. L.; Douglas, J. F.; Amis, E. J.; Karim, A. Langmuir 2003, 19, 3935.
    91. Zhou, J.; Li, L.; Lu, J. Polymer 2006, 47, 261.
    92. Fuller, C. S.; Erickson, C. L. J. Am. Chem. Soc. 1937, 59, 344.
    93. Jin, L.; Zhang, G.; Zhai, X.; Ma, Z.; Zheng, P.; Wang, W. Polymer 2009, 50, 6157.
    94. Mareau, V. H.; Prud’homme, R. E. Macromolecules 2005, 38, 398

    下載圖示 校內:2012-08-19公開
    校外:2012-08-19公開
    QR CODE