簡易檢索 / 詳目顯示

研究生: 陳彥文
Chen, Yan-wun
論文名稱: 摻鋁氧化鋅膜在有機發光元件陽極電極之應用
The application of ZnO:Al films on the anode of organic light-emitting diode device
指導教授: 李玉華
Lee, Yu-hua
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 摻鋁氧化鋅有機發光二極體雙靶源射頻磁控濺鍍陽極
外文關鍵詞: ZnO:Al, OLED, RF magnetron co-sputtering, anode
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用金屬鋅靶及鋁靶,利用雙靶源射頻磁控濺鍍法於氧氣及氬氣的氛圍下,在玻璃基板上沉積摻鋁氧化鋅(ZnO:Al)薄膜,基板溫度變化含括100~250℃。以鋁靶的射頻功率來控制鋁的摻雜含量,透過改變鋁靶的射頻功率及基板溫度,來觀察對樣品的微觀結構、組成成分,電性及光學特性上的影響。
    接著,將ZnO:Al薄膜應用在OLED元件上作為陽極,元件的組成結構分別是:PEDOT:PSS作為電洞傳輸層;Alq3作為電子傳輸層及發光層;Ca/Al層作為陰極,並研究元件之光電特性。以商業用ITO玻璃在相同條件下製備一對照元件,來與ZnO:Al薄膜作為陽極之元件作比較。
    ZnO:Al薄膜在PAl =50 W,Tsub =250℃的製程條件下,電阻率為1.75×10-3Ω-cm,可見光穿透率為86.5%,其作成發光元件的特性是所有樣品中最佳的。最大發光效率約為5.54 cd/A於電流為 4.64 mA時,整流比為736.21。

    In our study, aluminum-doped zinc oxide (ZnO:Al) thin films were deposited on glass substrates by RF magnetron co-sputtering method using two separate metallic targets of Zn and Al in an Ar/O2 atmosphere at different substrate temperatures ranging from 100 to 250℃. The Al content was controlled by varying Al RF power, and the influence of Al contents and substrate temperature on the structure, composition, electrical and optical properties of ZnO:Al films was investigated.
    Then, these ZnO:Al films were used as an anode contact to fabricate organic light-emitting diodes(OLED). The device structure consisted of a hole transport layer (HTL) of PEDOT:PSS, and an electron transport/emitting layer (ETL/EML) of Alq3. The cathode contact deposited on top of the EML was a bi-layer consisting of Ca layer and Al layer. The electro- luminescence performances of the devices were studied. For comparison, a control device was fabricated on the commercial ITO/glass under the same conditions.
    The ZnO:Al film with the electrical resistivity of 1.75×10-3Ω-cm and the optical transmittance 86.5% in the visible range was prepared at PAl = 50 W and Tsub = 250℃, and it had the best device performance among all samples. The luminance efficiency of 5.54 cd/A was measured at the current output of 4.64 mA for the ZnO:Al films, and the rectification ratio was 736.21 .

    第一章 緒論 1-1 透明導電膜簡介 ………………………………………… 1 1-2有機發光二極體簡介 …………………………………… 4 1-2-1有機發光二極體之發展歷史 …………………… 4 1-2-2有機發光二極體之優、缺點 …………………… 5 1-2-3有機發光二極體未來之展望 …………………… 7 第二章 理論原理 2-1 濺鍍原理 ……………………………………………… 9 2-1-1 電漿 ……………………………………………… 9 2-1-2 直流輝光放電 ………………………………… 10 2-1-3 濺鍍現象 ……………………………………… 15 2-1-4 直流濺鍍系統 ………………………………… 17 2-1-5 射頻濺鍍系統 ………………………………… 18 2-1-6 磁控濺鍍系統 ………………………………… 18 2-1-7 反應性濺鍍 …………………………………… 21 2-2 薄膜沉積現象 ………………………………………… 22 2-3 氧化鋅薄膜特性 ……………………………………… 25 2-4有機發光二極體 ……………………………………… 28 2-4-1 發光原理 ………………………………………… 28 2-4-2 基本結構 ………………………………………… 33 2-4-3 有機發光元件的材料 …………………………… 37 2-4-4 有機發光元件的光電特性 ……………………… 43 第三章 實驗儀器介紹與樣品製作流程 3-1實驗儀器介紹 ………………………………………… 48 3-1-1 射頻(RF)磁控溅鍍系統 ………………………… 49 3-1-2 歐傑(Auger)電子能譜儀 ……………………… 50 3-1-3 X-ray繞射分析儀 ……………………………… 52 3-1-4 原子力學顯微鏡(AFM)量測系統 ……………… 53 3-1-5 膜厚分析 ………………………………………… 55 3-1-6 霍爾效應(Hall Effect)量測系統 …………… 57 3-1-7 可見光譜分析儀 ………………………………… 67 3-2 樣品製作流程 ………………………………………… 71 3-2-1 實驗流程圖 …………………………………… 71 3-2-2 實驗材料 ……………………………………… 72 3-2-3 製程前處理 ……………………………………… 72 3-2-4 ZnO:Al薄膜製程步驟 ………………………… 73 第四章 OLED元件製作與量測 4-1 OLED元件之製作過程 ………………………………… 75 4-2元件特性量測 ………………………………………… 81 第五章 實驗結果與討論 5-1 實驗參數之設定與選擇 ……………………………… 83 5-2 ZnO:Al薄膜性質之分析 ……………………………… 86 5-2-1 電性分析… ……………………………………… 86 5-2-2 微結構分析 ……………………………………… 90 5-2-3 光學性質分析 ………………………………… 94 5-2-4 成分分析 ……………………………………… 99 5-2-5 AFM表面粗糙度分析 …………………………… 101 5-3 OLED之光電特性 …………………………………… 105 5-3-1基板溫度(Tsub)之影響 ………………………… 105 5-3-2 Al靶射頻功率(PAl)之影響 …………………… 109 5-3-3 相較於ITO之結果 …………………………… 112 第六章 結論 …………………………………………… 113 參考文獻 ……………………………………………… 114

    [1].H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu, J. Electron Mater, 32, 9, (2003).
    [2].Han-Ki Kim, Sang-Heon Han, and Tae-Yeon Seong, Appl. Phys. Lett., 77, 11, (2000).
    [3].Han-Ki Kim, Kyoung-Kook Kim, Seong-Ju Park, and Tae-Yeon Seong , J. Appl. Phys., 94, 6, (2003).
    [4].Y.G. Wanga, S.P. Laua, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F. Yua, and B.K. Taya, Journal of Crystal Growth, 259, 335-342, (2003).
    [5].Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W. White , Journal of Crystal Growth, 216 , 330-334, (2000).
    [6].李玉華, “透明導電膜及其應用”, 科儀新知, 第12卷, 第一期, 94-102, (1990).
    [7].J.L.Vossen, Physics of Thin Films, 9, 1-64, (1997).
    [8].H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconductoer Transparent Thin Films, IOP Publishing Ltd., 1-4, (1995).
    [9].A.R. Schlatmann, D. Wilms Floet, A. Hilberer et al., Appl. Phys. Lett., 69, 12, 1764, (1996).
    [10].X.T. Hao, F.R. Zhu, K.S. Ong, and L.W. Tan, Semicond. Sci. Technol., 21, 48-54, (2006).
    [11].Junqing Zhao, Shijie Xie, Shenghao Han, Zhiwei Yang, Lina Ye, and Tianlin Yang, Synthetic Metals, 114, 251-254, (2000).
    [12].陳金鑫, 黃孝文, “OLED有機電激發光材料與元件”, 五南圖書, 台北 ,(2005).
    [13].Choongmo Kim, Sookjoo Kim, and Chongmu Lee, J. J. Appl. Phys., 44, 12, 8501, (2005).
    [14].X.Q. Meng, W. Zhen, J.P. Guo, and X.J. Fan, Appl. Phys. A, 70, 421-424, (2000).
    [15].Fabio Quaranta, Antonio Valentini, Federica R. Rizzi, and Giuseppe Casamassima, J. Appl. Phys.,74 ,1 , (1993).
    [16].Takaaki Tsurumi, Shuichi Nishizawa, Naoki Ohashi, and Takeshi Ohgaki, Jpn. J. Appl. Phys., 38, 3682, (1999).
    [17].Xin Chen, Wenjie Guan, Guojia Fang, and X.Z. Zhao, Applied Surface Science, 252 , 1561, (2005).
    [18].B.J. Jin, S.H. Bae, S.Y. Lee, and S. Im, Materials Science and Engineering, B71 , 301-305, (2000).
    [19].Y. Yoshino, T. Makino, Y. Katayama, and T. Hata, J. Appl. Phys., 59, 538, (2000).
    [20].M.S. Wu, W.C. Shin, and W.H. Tsai, J. Phys. D: Appl. Phys., 31, 943, (1998).
    [21].S.Y. Myong, S.J. Baik, C.H. Lee, W.Y. Cho, and K.S. Lim, Jpn. J. Appl. Phys., 36 , L1078 ,(1997).
    [22].G. Neumann, Phys. Status Solids, 105, 605, (1981).
    [23].Yasuhiro Igasaki, and Hiromi Saito, Thin Solid Films, 199, 223-230, (1991).
    [24].Takashi Komaru et al, Jpn. J. Phys. Part I, 38, 5796-5840, (1999).
    [25].M.T. Young, and S.D Keun, Thin Solid Films, 410, 8-13, (2002).
    [26].H.T. Cao, C. Sun, Z.L. Pei, A.Y. Wang, L.S. Wen, R.J. Hong, and X. Jiang, Journal of Material Science: Materials in Electronics, 15, 169-174, (2004).
    [27].C.W. Tang, and S.A. VanSlyke, Appl. Phys. Lett., 51, 913, (1987).
    [28].J.H. Burrououghes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. MacKay, R.H. Friend, P.L. Burn, and A.B. Holmes, Nature, 347, 539, (1990).
    [29].J.R. Roth, “Industrial plasma engineering-Volume1: Principles Institute of Physics”, London, (1995).
    [30].羅吉宗, “薄膜科技與應用,全華科技圖書股份有限公司”, 台北市, 2-5~11, (2005).
    [31].Brian Chapman, “Glow Discharge Processes”, John Wiley, and Sons, New York, (1980).
    [32].F. Shinoki, and A. Itoh, J. Appl. Phys., 46, 3381, (1975).
    [33].H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish, “Institute of Physics”, London, (1995).
    [34].W. Water, and S.Y. Chu, Mater. Lett., 55, 67-72, (2002).
    [35].S.Y. Chu, W. Water, and J.T. Liaw, J. Eur. Cera. Soc., 23, 1593-1598, (2003).
    [36].水瑞鐏, “氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用”, 國立成功大學電機工程學系博士論文, (2002).
    [37].D.G. Baik, and S.M. Cho, Thin Solid films, 354, 227-231, (1999).
    [38].P. Nunes, D. Costa, E. Fortunato, and R. Martins, Vacuum, 64, 293-297, (2002).
    [39].S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K.B. Ucer, and R.T. Williams, Physica B, 308-310, 1197-1200, (2001).
    [40].Y. Igasaki, and H. Saito, Thin Solid Films, 199, 223-230, (1991).
    [41].M.T. Young, and S.D. Keun, Thin Solid Films, 410, 8-13, (2002).
    [42].王敬龍, “以溶膠-凝膠法製備ITO薄膜之製程研究”, 國立成功大學材料科學及工程研究所碩士論文, (1996).
    [43].許國銓, “科技玻璃-高性能透明導電膜玻璃”, 材料與社會, 84 期, (1993).
    [44].C.C. Lin, C.S. Hsiao, S.Y. Chen, and S.Y. Cheng, J. Electrochem. Soc., 151(5), G282-G288, (2004).
    [45].Z. Fang, Y. Wang, X. Peng, X. Liu, and C. Zhen, Mater. Lett., 57, 4187-4190, (2003).
    [46].甘炯耀, “ZnO 之薄膜製備與發光性質研究”, 國立清華大學材料科學工程學系碩士論文, (2001).
    [47].Hari Singh Nalwa, and Lauren Shea Rohwer, “Handbook of Luminescence, Display Materials and Divices Organic Light-Emitting Diodes”, (2003).
    [48].W.D. Gill, J. Appl. Phys., 43, 5033, (1972).
    [49].C.W. Tang, S.A. VanSlyke, and C.H. Chen, J. Appl. Phys., 65, 3610, (1989).
    [50].C.W. Ko, Y.T. Tao, A. Danel, L. Krzemiñska, P. Tomasik, Chem. Mater., 13, 2441, (2001).
    [51].T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, and W.J. Feast, Appl. Phys. Lett., 75, 1679, (1999).
    [52].韓岱君, “含碳化鐵(Fe3C)奈米磁顆粒之非晶質碳膜其微觀結構、磁性質與磁阻之研究”, 成大物理所博士論文, (2003).
    [53].L.J. van der Pauw, Philips Research Reports, 13, 1, (1985).
    [54].Neamen, “Semiconductor physics and devices”, McGraw Hill, 200-202, (2003).
    [55].J. Tauc, “Amorphous and Liquid Semiconductors”, Plenum, London, (1974).
    [56].E.A. David, and N.F. Mott, Phil. Mag., 22, 903, (1970).
    [57].S.T. Tan, B.J. Chen, X.W. Sun, X. Hu, X.H. Zhang, and S.J. Chua, Journal of crystal growth, 281, 571-576, (2005).
    [58].J.G. Lu, Z.Z. Ye, L. Wang, J.Y. Huang, and B.H. Zhao, Mat. Sci. Semicon. Proc., 5, 491, (2003).
    [59].楊富順, “有機奈米薄膜/鋁陰極結構於高效率高分子發光二極體之研究”, 成大光電所碩士論文, (2005).
    [60].E. Burstein, Phys. Rev., 93, 632-633, (1954).
    [61].T.S. Moss, Phys. Soc. London Sect. B, 67, 775-782, (1954).

    下載圖示 校內:2010-08-20公開
    校外:2010-08-20公開
    QR CODE