| 研究生: |
吳信成 Wu, Hsin-Cheng |
|---|---|
| 論文名稱: |
X-Y平台之即時運動控制系統的設計與實現 Design and Implementation of the Real-Time Motion Control Systems on An X-Y able |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 交叉耦合控制器 、前饋補償器 、PID控制器 、精密定位 、X-Y平台 、即時控制 |
| 外文關鍵詞: | X-Y table, PID controller, precise positioning, cross-couple controller, feed-forward compensator, real-time control |
| 相關次數: | 點閱:194 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
X-Y雙軸運動控制平台系統是一個被廣泛用於工業上的伺服機構,整個系統主要分為機械結構、直流馬達致動器、感測器和控制器部分。機械結構包括有滾珠導螺桿、U型線性滑軌組、線性軸承及可撓性連軸器等;致動器是採用永磁式直流馬達(permanent magnetic direct current motor);感測器是使用光學式旋轉型編碼器(optical rotary encoder)來量測馬達旋轉的角度;控制器則是以個人電腦為控制核心,搭配運動控制軸卡(EPCIO-6000)所組成。本系統的控制目的為控制X-Y雙軸運動控制平台做精密的定位控制,而其中所使用的軌跡追蹤控制器為PID控制器,並配合速度前饋補償器的使用來降低時間延遲效應,由於運動控制平台會因各軸間的動態特性不同而使得輪廓誤差變大,因此,本系統中亦加入了交叉耦合控制器以降低輪廓誤差。以上之線性控制器固然有高的頻寬及穩定性,但仍無法完全地消除因摩擦力所造成的非線性Stick-Slip現象,為了消除此非線性現象,本文建立了摩擦力模型,並根據此摩擦力模型做摩擦力的前饋補償,使得系統能夠更精準地做定位控制的動作。而本系統的控制介面是由程式語言Visual C++ 2005及採用MFC應用程式軟體架構所撰寫而成,分為離線運動控制介面與即時運動控制介面兩個部分,利於使用者的系統操作。
The X-Y table is a servomechanism commonly used in industrial applications. The system consists of a mechanism, motor actuators, sensors and a controller. The mechanism is composed of two ball screws, U-type linear rails, linear bearings and flexible couplings. The permanent magnetic direct current motors are used as actuators. The rotary encoder is used to measure the angular position of the DC motor. The digital controller is implemented on the personal computer and a motion control card (EPCIO-6000). The objective of this thesis is to realize precise positioning control using a real-time motion control system on an X-Y table. In the system, the tracking error is eliminated by the PID controller, and the feed-forward compensator is used to reduce the time delay effect of the system. Because the difference of dynamical characteristics of two axes will enlarge the contouring error, the cross-coupled controller is added into the system to attenuate this phenomenon. Although the aforementioned linear motion controller has wide bandwidth and high stability, it still can not entirely eliminate the stick-slip phenomenon caused by the friction. In order to reduce this nonlinear phenomenon, this thesis establishes the friction model and bases on this model to implement the feed-forward compensator of the friction. Therefore, the control system has more powerful ability to perform precise positioning. In this research, the motion control interfaces are implemented through Visual C++ 2005 and adopt the MFC application frameworks. The interfaces are divided into two parts, one is the off-line motion control interface and another is the real-time motion control interface. These human/machine interfaces will facilitate the users to operate the system.
[1] K. Åström and T. Hägglund, PID Controller: Theory, Design, and Tuning, Research Triangle Park, N. C. : Instrument Society of America, 1995.
[2] Y. Koren and C. C. Lo, “Advanced Controller for Feed Drivers,” Annals of the CIRP, Vol. 41, pp. 689-698, 1992.
[3] M. Tomizuka, “Zero Phase Error Tracking Algorithm for Digital Control,” Transactions of the ASME Journal of Dynamic Systems, Measurement and control, Vol. 109, pp. 65-68, 1987.
[4] Y. Koren, “Cross-Coupled Biaxial Computer for Manufacturing Systems,” Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, Vol. 102, pp. 265-272, 1980.
[5] Y. Koren and C. C. Lo, “Variable Gain Cross Coupling Controller for Contouring,” Annals of the CIRP, Vol. 40, pp. 371-374, 1991.
[6] B. Armstrong-Hélouvry, Control of Machines with Friction, Kluwer Academic Publishers, Boston, 1991.
[7] P. R. Dahl, “A Solid Friction Model,” Technical Report, The Aerospace Corporation, EI-Segundo, California, 1968.
[8] Dean Karnopp, “Computer Simulation of Stick-slip Friction in Mechanical Dynamic System,” Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, Vol. 107, pp. 100-103, 1985.
[9] B. Armstrong-Hélouvry, P. Dupont, and C. Canudas de Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction,” Automatica, Vol. 30, pp. 1083-1138, 1994.
[10] 黃聖財,「以數位訊號處理器為基礎之球與桿系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十三年。
[11] 葉賜旭,「多軸運動系統之整合式控制器及參數化插值器設計」,國立交通大學電機與控制工程研究所博士論文,民國八十九年。
[12] C. Canudas de Wit, H. Olsson, K. J. Åström, and P. Lischinsky, “A New Model for Control of Systems with Friction,” IEEE Transactions on Automatic Control, Vol. 40, pp. 419-425, 1995.
[13] D. A. Jr. Haessig and B. Friedland, “On the Modeling and Simulation of Friction,” Transactions of the ASME Journal of Dynamic Systems, Measurement and Control, Vol. 113, pp. 354-362, 1991.
[14] S. M. Philips and K. R. Ballou, “Friction Modeling and Compensation for an Industrial Robot,” Journal of Robotic Systems, 10(7), pp. 947-971.
[15] B. V. Derjaguin, V. E. Push, and D. M. Tolstoi, “A Theory of Stick-slip Sliding of Solids,” In Proc. Conf. On Lubrication and Wear, London, pp. 257-268, 1957.
[16] T. Umeno and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degree-of-Freedom Controller Design,” IEEE Transactions on Industrial Electronics, Vol. 38, pp. 363-368, 1991.
[17] H. Olsson, K. J. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky, “Friction Models and Friction Compensation,” European Journal of Control, No. 4, pp. 176-195, 1998.
[18] 蔡政宏,「發展先進運動控制之CAD及其於精密CNC之實現」,國立交通大學電機與控制工程研究所碩士論文,民國九十三年。
[19] 黃百毅,「智慧型精密定位控制系統設計」,國立台灣大學電機學院研究所博士論文,民國八十九年。
[20] 方仁武,「交叉耦合控制器設計與其在直接驅動機械臂之應用」,國立清華大學動力機械工程學系博士論文,民國九十一年。
[21] 郭尚君,「精通視窗程式設計Visual C++ .NET 2003」,文魁資訊股份有限公司,民國九十二年。
[22] 張碩,「自動控制系統」,鼎茂圖書出版股份有限公司,民國九十年。
[23] 鄭錦聰,「MATLAB程式設計」,全華科技圖書股份有限公司,民國九十二年。
[24] 張義和,「Protel DXP電腦輔助電路設計全紀錄」,全華科技圖書股份有限公司,民國九十二年。