| 研究生: |
劉建樂 Lao, Kin-Lok |
|---|---|
| 論文名稱: |
整合式液滴平台之研發及其於雙重乳化包覆之應用 Integrated Droplet Formation Platforms and Their Applications for Double Emulsion |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 微流體 、微機電系統 、單一乳化 、T型管道 、移動側壁 、雙重乳化 |
| 外文關鍵詞: | Single emulsion, Double emulsions, Microelectromechanical systems (MEMS), T-junction, Microfluidics, Moving wall |
| 相關次數: | 點閱:148 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用微流體技術製備微乳化液滴的方法在近年來已經被廣泛證實為極具潛力之研究方向。本研究整合T型管道、可控制式側壁結構與邊削流微流體元件形成一整合型微流體晶片,成功產生雙重乳化液滴,並可達成主動式的內層液滴數目之控制效果。首先,油包水乳化液滴藉由T型管道形成,接著當此液滴通過一個連有三條垂直支管道的微流體管道時,這些支管道能產生液滴均等分的效果。再配合能選擇性控制開關的側壁結構,數量由一到三個的均勻液滴能被順利產生。這些被形成的液滴接著會沿著管道流往出口,最後利用邊削流微流體元件以產生包含著不同數量內層液滴的雙重乳化包覆。研究結果顯示,於各種側壁結構作用情況下所產生的液滴極為均勻,直徑的變異係數都約在5%左右。進一步的配合了十條垂直支管道的微流體晶片也被利用以產生更多數目的均等分液滴,並同樣地實現多重乳化包覆。最後,利用T型管道所形成的液滴和與其相關之利用支管道所產生的均分液滴關係之實驗也被探討。由實驗結果可得知,經由適當調節內層水相與中層油相液體之流量,各種大小的均分液滴可被獲得。本實驗之結果可應用於化妝品、藥品與食品等之加工上。
Microfluidic technology has shown a reliable and promising new route for the formation of uniform emulsions in the past decade. In this thesis, a novel method for active control the internal droplet number of double-emulsion droplets was demonstrated. Moreover, various sizes of internal and external droplets were also successfully formed. This investigation presented a device integrated with T-junction, moving wall structure, and sheath-flow junction components, utilizing in water-in-oil-in-water (W/O/W) multiple emulsions. During the process, inner water-in-oil (W/O) single-emulsion droplets were formed by a T-junction design first, and then the droplets were subdivided into smaller droplets with equal size by passing through a microchannel connected with a series of T-junctions (3 branches). Meanwhile, the moving wall structures beside the branches could be exploited to control the number of the subdivided droplets by alternative blocking or releasing the branches. Following these steps, a certain number of subdivided droplets could be formed, and then moved out together. Finally, double-emulsion droplets with 1, 2 or 3 internal droplets were formed by using a sheath-flow junction microfluidic device. Experiment data demonstrated that the inner and outer droplets could have narrow size distributions with coefficients of variation in diameter of approximately 5%. At last, another extended design with 10 branches was used to subdivide a water-in-oil droplet into 10, and formed uniform double emulsions with 10 inner droplets. Relationships between the inner droplets formed by T-junction at inlet and the relevant sub-droplets formed by T-junctions at outlet were proved. Based on the results, sub-droplets with various sizes could be obtained by adjusting the relative flow rates of R1 (inner phase) and R2 (middle phase). The developments of these microfluidic devices are promising for a variety of applications in the cosmetics, pharmaceutical, and food industries.
[1] Atencia J, Beebe D J. Controlled microfluidic interfaces. Nature, 2005, 437: 648-655
[2] Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phy Rev Letts, 2001, 86: 4163-4166
[3] Link D R, Anna S L, Weitz D A, Stone H A. Geometrically mediated breakup of drops in microfluidic devices. Phy Rev Letts, 2004, 92: 054503
[4] Yi G R, Thorsen T, Manoharan V N, Hwang M J, Jeon S J, Pine D J, Quake S R, Yang S M. Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater, 2003, 15: 1300-1304
[5] Tice J D, Lyon A D, Ismagilov R F. Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta, 2004, 507: 73-77
[6] He M, Edgar J S, Jeffries G D M, Lorenz R M, Shelby J P, Chiu D T. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter- volume droplets. Anal Chem, 2005, 77: 1539-1544
[7] Van der Graaf S, Steegmans M L J, Van Der Sman R G M, Schroen C G P H, Boom R M. Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification. Colloids Surf A, 2005, 266: 106-116
[8] Dendukuri D, Tsoi K, Hatton T A, Doyle P S. Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir, 2005, 21: 2113-2116
[9] Anna S L, Bontoux N, Stone H A. Formation of dispersions using “flow focusing” in micrchannels. Appl Phys Letts, 2003, 82: 364-366
[10] Xu Q, Nakajima M. The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Appl Phys Lett, 2004, 85: 3726-3728
[11] Davidson M R, Harvie D J E, Cooper-White J J. Flow focusing in microchannels. ANZIAM, 2005, 46: 47-58
[12] Garstecki P, Stone H A, Whitesides G M. Mechanism for flow-rate controlled breakup in confined geometries: A route to monodisperse emulsions. Phys Rev Letts, 2005, 94: 164501
[13] Lewis P C, Graham R R, Nie Z, Xu S, Seo M, Kumacheva E. Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules, 2005, 38: 4536-4538
[14] Tan Y C, Cristini V, Lee A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuator B- Chem, 2006, 114: 350-356
[15] Kawakatsu T, Kikuchi Y, Nakajima M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc, 1997, 74: 317-321
[16] Sugiura S, Nakajima M, Seki M. Prediction of droplet diameter for microchannel emulsification. Langmuir, 2002, 18: 3854-3859
[17] Sugiura S, Nakajima M, Seki M. Preparation of monodispersed polymeric microspheres over 50μm employing microchannel emulsification. Ind Eng Chem Res, 2004, 43: 4043-4047
[18] Xia Y, Whitesides G M. Soft lithography. Annu Rev Mater Sci, 1998, 28: 153-184
[19] Whitesides G M, Stroock A D. Flexible methods for microfluidics. Physics Today, 2001, 54: 42-48
[20] Tong J, Nakajima M, Nabetani H, Kikuchi Y, Maruta Y. Production of oil-in-water microspheres using a stainless steel microchannel. J Colloid Interface Sci, 2001, 237: 239- 248
[21] Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M. Preparation of monodispersed solid lipid micropheres using a microchannel emulsification technique. J Colloid Interface Sci, 2000, 227: 95-103
[22] Sugiura S, Nakajima M, Itou H, Seki M. Synthesis of polymeric microspheres with narrow size distributions employing microchannel emulsification. Macromol Rapid Commun, 2001, 22: 73-778
[23] Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K. Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. J Colloid Interface Sci, 2004, 278: 198-205
[24] Kobayashi I, Yasuno M, Iwamoto S, Shono A, Satoh K, Nakajima M. Silicon array of elongated through –holes for monodisperse emulsion droplets. AIChE, 2002, 48: 1639-1644
[25] Kobayashi I, Nakajima M, Mukataka S. Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloids Surf A, 2003, 229: 33-41
[26] Kobayashi I, Mukataka S, Nakajima M. Production of monodisperse oil-in-water emulsions using a large silicon straight-through microchannel plate. Ind Eng Chem Res, 2005, 44: 5852-5856
[27] Kobayashi I, Mukataka S, Nakajima M. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Langmuir, 2005, 21: 7629-7632
[28] Okushima S, Nisisako T, Torii T, Higuchi T. Chontrolled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 2004, 20: 9905-9908
[29] Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A. Monodisperse double emulsions generated from a microcapillary device. Science, 2005, 308: 537-541
[30] Lorenceau E, Utada A S, Link D R, Cristobal G, Joanicot M, Weitz D A. Generation of polymerosomes from double emulsions. Langmuir, 2005, 21: 9183-9186
[31] Chen C T, Lee G B. Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic Chip, Journal of Microelectromechanical Systems, 2006, 15: 1492-1498
[32] Lee C H, Hsiung S K, Lee G B. A tunable applications for formation of micro-droplets in liquids. JMM, 2007, 17: 1121-1129
[33] Lin Y H, Lee C H, Lee G B. Droplet formation utilizing controllable moving-wall structures for double emulsion applications. Journal of Microelectromechanical Systems, 2008, 17: 573-581
[34] Kerker M J. Colloid Interface Science, 1987, 116: 296-299
[35] Schramm L L. (Ed.). Emulsions: Fundamentals and Applicatoins in the Petroleum Industry, American Chemical Society: Washington, 1992
[36] Griffin W C. Emulsions in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed., Vol. 8, Interscience: New York, 1965, 117-154
[37] Griffin W C, Cosmet J. Chem., 1954, 1, 311
[38] BECHER P: Nonionic Surfactants, SCHICK M J (ed.):
Marcel Dekker, Surfactant Science Series, New York, 1987, 1
[39] MARZALL L. Nonionic Surfactants Editor, SCHICK M J (ed.): Marcel Dekker, Surfactant Science Series, New York, 1987, 23
[40] DAVIES J T. Proc. Int. Congr. Surface Activity, Academic Press, London, 1959, 426, Volume 1; J. T. DAVIES, E. K. RIDEAL, Interfacial Phenomena, Academic Press, New York, 1961
[41] Nisisako T, Okushima S, Torii T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter, 2005, 1: 23-27
[42] Tan Y C, Fisher J S, Lee A I, Cristini V, Lee A P. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip, 2004, 4: 292-298
[43] Xu Q. Generation of microbubbles in microfluidic devices. Presented before Seminar at the National Food Research Institute, Tsukuba, Japan, 2005.
[44] Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulation 50 & 100, released by MICRO-CHEM. Corp.
[45] Duffy D C, McDonald J C, Schueller O J A, Whitesides G. M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem, 1998, 70: 4974-4984
[46] McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H, Schueller O J A, Whitesides G M. Fabrication of Microfluidic Systems in Poly(dimethylsiloxane). Electrophoresis, 2000, 21: 27-40
[47] Ng J M K, Gitlin G I, Stroock A D, Whitesides G. M. Components for Integrated Poly(dimethylsiloxane)
Microfluidic Systems. Electrophoresis, 2002, 23: 3461-3473
[48] Unger M A, Chou H P, Thorsen T, Scherer, Quake A S R. Monolithic Micro-fabricated Valves and Pumps by Multilayer Soft Lithography. Science, 2000, 288: 113-116
[49] Quake S R, Scherer A. From Micro-to Nanofabrication with Soft Materials. Science, 2000, 290: 1536-1540
[50] Junzo S, Satoru S, Akira S, Hiroshi F, Hideki S and Tadanori M. A nanometer lipid emulsion, lipid nano-sphere (LNS®), as a parenteral drug carrier for passive drug targeting. International Journal of Pharmaceutics, 2004, 273: 75-83
[51] Tawfik D S, Griffiths A D. Man-made cell-like compartments for molecular evolution. Nature Biotechnology, 1998, 16:652-656.