| 研究生: |
蔡孟政 Tsai, Meng-Cheng |
|---|---|
| 論文名稱: |
複合圓桿扭轉問題之解析 Saint-Venant's torsion of circular composite shafts |
| 指導教授: |
陳東陽
Chen, Tungyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 複數扭轉函數 、扭轉剛度 、週期排列 |
| 外文關鍵詞: | complex torsion function, torsional rigidity, periodic inclusions |
| 相關次數: | 點閱:142 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討圓形桿件內含有圓形內含物之扭轉問題,藉由複數諧和函數建立解析問題的架構,而求得翹曲函數與扭轉剛度,並以扭轉剛度之數值結果與文獻比較,映證扭轉剛度正確性;另外,依據扭轉剛度界限的觀點,評估扭轉剛度數值結果的正確性,並加以探討桿件之幾何參數與材料對扭轉剛度界限的影響。接著,考慮圓形桿件內含有週期排列內含物。利用旋轉對稱的特性,簡化界面連續條件,減少待定係數與線性方程式數目;另外,探討週期排列內含物之零翹曲曲線之特性,與級數項次對應扭轉剛度收斂的關係。最後,根據中性內含物之定義,由本文的架構推導圓形桿件內有中性複合圓柱之限制條件,並以數值結果呈現翹曲函數圖與扭轉剛度。
We consider the Saint-Venant's torsion of circular shafts containing a number of circular fibers. The complex variable method together with a conformal mapping technique is employed to derive the warping field and torsional rigidity of composite shafts. Numerical results of warping function and torsional rigidity are presented for a few simple configurations and are compared with existing solutions in the literature. In addition, the results are verified with rigorous bounds on the torsional rigidity based on variational principles. Next, we consider circular shafts containing circular inclusions with a periodic arrangement. We find that the zero warping lines can be identified. Due to the periodicity, we can also simplify the interface continuity conditions so that the number of unknown coefficients to be fulfilled can be much reduced. Finally, the definition of neutral inclusions allows us to construct the constraint conditions of circular shaft containing neutral coated fibers.
Chen, J.T. & Lee, Y.T., Torsional rigidity of a circular bar with multiple circular inclusions using the null-field integral approach, Comput. Mech 44, pp.221-232, 2009.
Chen, T., Benveniste, Y. & Chuang, P.C., Exact solutions in torsion of composite bars: thickly coated neutral inhomogeneities and composite cylinder assemblages, Proc. R. Soc. Lond. A 458, pp. 1719-1759, 2001.
Chen, T. & Lipton, R., Bounds for the torsional rigidity of shafts with arbitrary cross-sections containing cylindrically orthotropic fibers or coated fibers, Proc. R. Soc. Lond. A. 463, pp.3291-3309, 2007.
George, B. T. Jr., Calculus, Pearson, New York, 2008.
Kuo, Y.M. & Conway, H.D., The torsion of composite tubes and cylinders, Int. J. Solids and Struct, 9, pp.1553-1566, 1973.
Kuo, Y.M. & Conway, H.D., Torsion of cylinders with multiple reinforcement, J. Eng. Mech. Div. 100, pp.221-234, 1974.
Mansfield, E. H., Neutral holds in plane sheet-reinforced holes which are elastically equivalent to the uncut sheet, Quart. J. Mech. Appl. Math. 6, pp.370-378, 1953.
Muskhelishvili, N. I., Some Basic Problems of the Mathematical theory of Elasticity, Noordhoff, Gronongen, 1953.
Sokolnikoff, I.S., Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.
Timoshenko, S.P. & Gooder, J.N., Theory of Elasticity, McGraw-Hill, New York, 1970.
Yue, J.C. & Tang, R.J., Integral equation method for the torsion of a composite cylinder with crack and inclusion, Engineering Fracture Mechanics 55, pp.763-775, 1996.
莊博鈞, 複合圓桿之扭轉, 國立成功大學土木工程所碩士論文, 2001.