簡易檢索 / 詳目顯示

研究生: 卓昕研
Cho, Hsin-Yen
論文名稱: 陽離子脂質SM-102,一種莫德納疫苗之成分,修飾erg介導鉀離子電流的證據
Evidence for inhibitory effectiveness in erg-mediated potassium current exerted by SM-102, a cationic lipid known to be an ingredient of Moderna vaccine
指導教授: 吳勝男
Wu, Sheng-Nan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 39
中文關鍵詞: SM-102(1-辛基壬基 8-[(2-羥乙基)[6-氧代-6-(十一烷氧基)己基]氨基]-辛酸酯)erg介導的K+電流向內整流K+電流電流動力學電壓依賴性遲滯現象腦下垂體細胞睪丸間質細胞微膠細胞
外文關鍵詞: SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino] -octanoate), erg-mediated K+ current, inwardly rectifying K+ current, current kinetics, voltage-dependent hysteresis, pituitary cell, Leydig cell, microglial cell
相關次數: 點閱:96下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SM-102(1-辛基壬基 8-[(2-羥乙基)[6-氧代-6-(十一烷氧基)己基]氨基]-辛酸酯)是一種設計用以形成脂質奈米粒的陽離子胺基脂質,同時是莫德納COVID-19 mRNA疫苗中一種基本成分。然而,SM-102是否能影響不同類型的離子電流仍然未知。在本研究中,我們透過兩種內分泌細胞(例如大鼠腦下垂體腫瘤細胞GH3 cell和小鼠睪丸間質腫瘤細胞MA-10 cell)或微膠細胞BV2 cell來探討SM-102對細胞膜上離子電流的影響。我們將這些細胞放在高濃度K+、無Ca2+的細胞外液,並透過給予過極化電壓刺激產生K+電流,進而評估 SM-102對 erg介導的K+電流(IK(erg))的幅度和遲滯現象的影響。實驗結果發現,SM-102能有效阻斷IK(erg),並且具有濃度依賴性,其半抑制濃度(IC50)為108 μM,接近於解離常數(KD)值(即 134 μM)。再者,透過等腰三角形斜坡的電壓改變所產生IK(erg) 的遲滯現象強度能被SM-102有效降低。另一方面,轉染試劑TurboFectinTM 8.0 (0.1 %, v/v),也能有效地抑制過極化活化的 IK(erg),同時增加電流的去活化的時間進程。此外,當GH3細胞用精胺(30 μM)透析後,IK(erg)的幅度逐漸減少;而近一步外加SM-102 (100 μM)或TurboFectin (0.1 %)能更加降低電流幅度。在MA-10 Leydig細胞中,IK(erg)也能因SM-102或TurboFectin的處理而抑制,其中,SM-102抑制MA-10細胞中IK(erg)的IC50為98 μM。另外,SM-102也能抑制BV2微膠細胞中的向內整流K+電流的幅度。總結以上,SM-102在內分泌細胞(例如,GH3 或MA-10細胞)中能濃度依賴性地抑制IK(erg),若有相似的結果於體內研究發現,此作用可能有助於調整細胞的功能活性。

    SM-102 is an amino cationic lipid that has been tailored for formation of lipid nanoparticles and it is one of essential ingredients contained in the ModernaTM COVID-19 vaccine. However, to what extent it may modify different types of membrane ionic currents remains largely unanswered. In the present study, we investigated the effects of SM-102 on ionic currents either in two types of endocrine cells (e.g., rat pituitary tumor [GH3] cells and mouse Leydig tumor [MA-10] cells) or in microglial (BV2) cells. Hyperpolarization-activated K+ currents in these cells bathed in high-K+, Ca2+-free extracellular solution were examined to assess effects of SM-102 on the amplitude and hysteresis of erg-mediated K+ current (IK(erg)). The presence of SM-102 showed inhibitory effect on IK(erg) in a concentration-dependent fashion with a half-maximal concentration (IC50) of 108 μM, a value which is closely near the KD value (i.e., 134 μM) required for its accentuation of deactivation time constant of the current. The hysteretic strength of IK(erg) in response to long-lasting isosceles-triangular ramp pulse was effectively decreased in the presence of SM-102. Cell exposure to TurboFectinTM 8.0 (0.1 %, v/v), a transfection reagent, was able to inhibit hyperpolarization-activated IK(erg) effectively with a raise in deactivation time course of the current. Additionally, in GH3 cells dialyzed with spermine (30 μM), IK(erg) amplitude progressively decreased; moreover, further bath application of SM-102 (100 μM) or TurboFectin (0.1 %) diminished current magnitude further. In MA-10 Leydig cells, the IK(erg) was also blocked by the presence of SM-102 or TurboFectin. The IC50 value for SM-102-induced inhibition of IK(erg) in MA-10 cells was estimated to be 98 μM. In BV2 microglial cells, the amplitude of inwardly rectifying K+ current was inhibited by SM-102. Collectively, the presence of SM-102 dose-dependently suppressed IK(erg) in endocrine cells (e.g., GH3 or MA-10 cells), and such action may be responsible for their functional activities, presuming that similar in vivo findings exist.

    中文摘要 I ABSTRACT Ⅱ 致謝 Ⅳ Table of contents Ⅴ Figure of contents Ⅶ INTRODUCTION 1 MATERIALS AND METHODS 4  Drug and solutions 4  Cell preparations 5  Electrophysiological measurements 5  Whole-cell current recordings 6  Data analyses 7  Curve-fitting procedures and statistical analyses 8 RESULTS 9  Effect of SM-102 on erg-mediated K+ current (IK(erg)) measured from GH3 cells 9  Concentration-dependent analysis of SM-102-mediated inhibition of IK(erg) 10  Inhibitory effect of SM-102 on I–V relationship of IK(erg) 11  Effect of SM-102 on voltage-dependent hysteresis of IK(erg) 12  Effect of intracellular dialysis with SM-102 or spermine on the Amplitude of IK(erg) 13 Effect of SM-102 on IK(erg) identified in MA-10 Leydig cells 15 Effect of SM-102 on inwardly rectifying K+ current (IK(IR)) in BV2 Microglial Cells 16 DISCUSSION 17 REFERENCES 21 FIGURES 26 FIGURE LEGENDS 34 ABBREVIATIONS 39

    1. Sabnis, S.; Kumarasinghe, E.S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J.J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J.; et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol. Ther. 2018, 26, 1509–1519.
    2. Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther.-Nucleic Acids 2019, 15, 1–11.
    3. Tao, W.; Davide, J.P.; Cai, M.; Zhang, G.-J.; South, V.J.; Matter, A.; Ng, B.; Zhang, Y.; Sepp-Lorenzino, L. Noninvasive Imaging of Lipid Nanoparticle–Mediated Systemic Delivery of Small-Interfering RNA to the Liver. Mol. Ther. 2010, 18, 1657–1666.
    4. Reichmuth, A.M.; Oberli, M.A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016, 7, 319–334.
    5. Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021.
    6. Behr, J.P.; Demeneix, B.; Loeffler, J.P.; Perez-Mutul, J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 1989, 86, 6982–6986.
    7. Oliver, S.E.; Gargano, J.W.; Marin, M.; Wallace, M.; Curran, K.G.; Chamberland, M.; McClung, N.; Campos-Outcalt, D.; Morgan, R.L.; Mbaeyi, S.; et al. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Moderna COVID-19 Vaccine—United States, December 2020. MMWR. Morb. Mortal. Wkly. Rep. 2021, 69, 1653–1656.
    8. Mei, R.; Raschi, E.; Forcesi, E.; Diemberger, I.; De Ponti, F.; Poluzzi, E. Myocarditis and pericarditis after immunization: Gaining insights through the Vaccine Adverse Event Reporting System. Int. J. Cardiol. 2018, 273, 183–186.
    9. Albert, E.; Aurigemma, G.; Saucedo, J.; Gerson, D.S. Myocarditis following COVID-19 vaccination. Radiol. Case Rep. 2021, 16, 2142–2145.
    10. Kim, H.W.; Jenista, E.R.; Wendell, D.C.; Azevedo, C.F.; Campbell, M.J.; Darty, S.N.; Parker, M.A.; Kim, R.J. Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol. 2021, 212828.
    11. Vidula, M.K.; Ambrose, M.; Glassberg, H.; Chokshi, N.; Chen, T.; Ferrari, V.A.; Han, Y. Myocarditis and Other Cardiovascular Complications of the mRNA-Based COVID-19 Vaccines. Cureus 2021, 13.
    12. Williams, C.B.; Choi, J.-I.; Hosseini, F.; Roberts, J.; Ramanathan, K.; Ong, K. Acute Myocarditis Following mRNA-1273 SARS-CoV-2 Vaccination. CJC Open 2021, 10.
    13. Miller, E.R.; Moro, P.L.; Cano, M.; Shimabukuro, T.T. Deaths following vaccination: What does the evidence show? Vaccine 2015, 33, 3288–3292.
    14. Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System. JAMA Cardiol. 2020, 5, 831.
    15. Raschi, E.; Vasina, V.; Poluzzi, E.; De Ponti, F. The hERG K+ channel: Target and antitarget strategies in drug development. Pharmacol. Res. 2008, 57, 181–195.
    16. Martinson, A.S.; van Rossum, D.; Diatta, F.H.; Layden, M.J.; Rhodes, S.A.; Martindale, M.Q.; Jegla, T. Functional evolution of Erg potassium channel gating reveals an ancient origin for IKr. Proc. Natl. Acad. Sci. USA 2014, 111, 5712–5717.
    17. Wu, S.-N.; Li, H.-F.; Jan, C.-R.; Chen, I.-J.; Lo, Y.-C. Selective block by glyceryl nonivamide of inwardly rectifying K+ current in rat anterior pituitary GH3 cells. Life Sci. 1998, 63, PL281–PL288.
    18. Wu, S.-N.; Jan, C.-R.; Li, H.-F.; Chiang, H.-T. Characterization of Inhibition by Risperidone of the Inwardly Rectifying K+ Current in Pituitary GH3 Cells. Neuropsychopharmacology 2000, 23, 676–689.
    19. Hardman, R.M.; Forsythe, I. Ether-à-go-go-related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons. J. Physiol. 2009, 587, 2487–2497.
    20. Bauer, C.K.; Schwarz, J.R. Ether-à-go-go K+ channels: Effective modulators of neuronal excitability. J. Physiol. 2018, 596, 769–783.
    21. Wang, H.; Zhang, Y.; Cao, L.; Han, H.; Wang, J.; Yang, B.; Nattel, S.; Wang, Z. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res. 2002, 62, 4843–4848.
    22. Barros, F.; Villalobos, C.; García-Sancho, J.; Del Camino, D.; De La Peña, P.; De-La-Pena-Cortines, P. The role of the inwardly rectifying K+ current in resting potential and thyrotropin-releasing-hormone-induced changes in cell excitability of GH3 rat anterior pituitary cells. Pflügers Archiv 1994, 426, 221–230.
    23. Jwu-Lai, Y.; Yi-Ching, L.; Yun, W.; Ing-Jun, C. Cardiovascular interactions of nonivamide, glyceryl nonivamide, capsaicin analogues, and substance P antagonist in rats. Brain Res. Bull. 1993, 30, 641–648.
    24. So, E.C.; Chang, Y.-T.; Hsing, C.-H.; Poon, P.W.-F.; Leu, S.-F.; Huang, B.-M. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol. Lett. 2010, 192, 169–178.
    25. Liu, Y.-C.; Wu, P.-C.; Shieh, D.-B.; Wu, S.-N. The effects of magnetite (Fe3O4 ) nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3) cells and in RAW 264.7 macrophages. Int. J. Nanomed. 2012, 7, 1687–1696.
    26. Tsai, K.-L.; Chang, H.-F.; Wu, S.-N. The Inhibition of Inwardly Rectifying K+Channels by Memantine in Macrophages and Microglial Cells. Cell. Physiol. Biochem. 2013, 31, 938–951.
    27. Chang, W.-T.; Wu, S.-N. Characterization of Direct Perturbations on Voltage-Gated Sodium Current by Esaxerenone, a Nonsteroidal Mineralocorticoid Receptor Blocker. Biomedicines 2021, 9, 549.
    28. Hsu, H.-T.; Lo, Y.-C.; Wu, S.-N. Characterization of Convergent Suppression by UCL-2077 (3-(Triphenylmethylaminomethyl) pyridine), Known to Inhibit Slow Afterhyperpolarization, of erg-Mediated Potassium Currents and Intermediate-Conductance Calcium-Activated Potassium Channels. Int. J. Mol. Sci. 2020, 21, 1441.
    29. Liu, P.-Y.; Chang, W.-T.; Wu, S.-N. Characterization of the Synergistic Inhibition of IK(erg) and IK(DR). Int. J. Mol. Sci. 2020, 21, 8078.
    30. Fürst, O.; D’Avanzo, N. Isoform dependent regulation of human HCN channels by cholesterol. Sci. Rep. 2015, 5, 14270.
    31. Rappaport, S.M.; Teijido, O.; Hoogerheide, D.; Rostovtseva, T.K.; Berezhkovskii, A.M.; Bezrukov, S.M. Conductance hysteresis in the voltage-dependent anion channel. Eur. Biophys. J. 2015, 44, 465–472.
    32. Das, B.; Banerjee, K.; Gangopadhyay, G. Entropy hysteresis and nonequilibrium thermodynamic efficiency of ion conduction in a voltage-gated potassium ion channel. Phys. Rev. E 2012, 86, 061915.
    33. Zhou, J.; Augelli-Szafran, C.E.; Bradley, J.A.; Chen, X.; Koci, B.J.; Volberg, W.A.; Sun, Z.; Cordes, J.S. Novel Potent Human Ether-à-Go-Go-Related Gene (hERG) Potassium Channel Enhancers and Their in Vitro Antiarrhythmic Activity. Mol. Pharmacol. 2005, 68, 876–884.
    34. Hibino, H.; Inanobe, A.; Furutani, K.; Murakami, S.; Findlay, I.; Kurachi, Y. Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles. Physiol. Rev. 2010, 90, 291–366.
    35. Weiger, T.M.; Hermann, A. Polyamines block Ca2+-activated K+ channels in pituitary tumor cells (GH3). J. Membr. Biol. 1994, 140, 133–142.
    36. Laskey, J.; Phelps, P. Effect of cadmium and other metal cations on in vitro Leydig cell testosterone production. Toxicol. Appl. Pharmacol. 1991, 108, 296–306.
    37. Tenorio, B.; Da Silva, R.P.; Tenorio, F.C.A.M.; Rosales, R.R.C.; Junior, V.A.D.S.; Nogueira, R.D.A. Effect of heat stress and Hsp90 inhibition on T-type calcium currents and voltage-dependent potassium currents in leydig cells. J. Therm. Biol. 2019, 84, 1–7.
    38. Wu, S.-Y.; Chen, Y.-W.; Tsai, S.-F.; Wu, S.-N.; Shih, Y.-H.; Jiang-Shieh, Y.-F.; Yang, T.-T.; Kuo, Y.-M. Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K+ channel. Sci. Rep. 2016, 6, 22864.
    39. Sung, R.J.; Wu, S.-N.; Wu, J.-S.; Chang, H.-D.; Luo, C.-H. Electrophysiological mechanisms of ventricular arrhythmias in relation to Andersen-Tawil syndrome under conditions of reduced IK1: A simulation study. Am. J. Physiol. Circ. Physiol. 2006, 291, H2597–H2605.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE