| 研究生: |
康襄瑋 Kang, Hsiang-Wei |
|---|---|
| 論文名稱: |
積層複合材料修補具裂紋金屬結構之破壞力學分析 Fracture Mechanics Analysis of Cracked Metallic Structures Repaired with Laminated Composite Materials |
| 指導教授: |
戴名駿
Dai, Ming-Jyun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 應力強度因子 、複合材料修補 、破壞力學 、有限元素法 、疲勞壽命 |
| 外文關鍵詞: | Stress intensity factor, Composite repair, Fracture mechanics, Finite element method, Fatigue life |
| 相關次數: | 點閱:52 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在航太、造船和海洋工程等領域,結構損傷(如裂紋)的修補是保障結構安全性和延長其使用壽命的關鍵課題。利用複合材料貼片具有高強度、輕便和耐腐蝕等優勢對結構進行修補,能夠顯著提升結構強度。本研究利用有限元素軟體ABAQUS計算利用積層複合材料對具裂紋金屬結構之破壞力學行為,並分析裂紋長度、裂紋角度、外力載荷、裂紋位置及裂紋種類對應力強度因子的影響。研究結果表明纖維排列角度對修補效果有顯著影響,其中最佳的纖維排列角度需要根據裂紋角度做選擇。對於貫穿裂紋雙面貼片修補的修補效果顯著好於單面貼片修補。此外裂紋位置和種類亦對應力強度因子也有影響。選擇合適的纖維排列角度及修補方式可顯著提升結構的結構強度和疲勞壽命。這一研究對工程應用具有重要意義,未來可進一步探討不同複合材料和調整複合材料的影響,以期得到更好的修補效果。
In fields such as aerospace, naval architecture, and ocean engineering, the repair of structural damage (such as cracks) is a critical issue for ensuring structural safety and extending its service life. Utilizing composite materials, which have advantages such as high strength, light weight, and corrosion resistance, for structural repairs can significantly enhance structural strength. This study uses the finite element software ABAQUS to calculate the fracture mechanics behavior of cracked metallic structures repaired with laminated composite materials. It analyzes the effects of crack length, crack angle, external load, crack location, and crack type on the stress intensity factor.The research results indicate that the fiber orientation angle has a significant impact on the repair effectiveness, with the optimal fiber orientation needing to be chosen based on the crack angle. For through-thickness cracks, double-sided repairs are significantly more effective than single-sided repairs. Additionally, the crack location and type also influence the stress intensity factor. Choosing the appropriate fiber orientation angle and repair method can significantly enhance the structural strength and fatigue life of the structure. This research holds important implications for engineering applications. Future studies could further explore different composite materials and adjustments to achieve improved repair effectiveness.
[1] Griffith, A.A., The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, Vol. 221, pp. 163-198, 1921.
[2] Irwin, G. R. "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate." Journal of Applied Mechanics, vol. 24, pp. 361-364, 1957.
[3] Tada, H., Paris, P. C., and Irwin, G. R. The Stress Analysis of Cracks Handbook. Del Research Corporation, 1973.
[4] Rice, J. R. "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks." Journal of Applied Mechanics, vol. 35, pp. 379-386, 1968.
[5] Rice, J. R. "A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks." Journal of the Mechanics and Physics of Solids, vol. 16, pp. 1-12, 1968.
[6] Hutchinson, J. W. "Singular Behaviour at the End of a Tensile Crack in a Hardening Material." Journal of the Mechanics and Physics of Solids, vol. 16, pp. 13-31, 1968.
[7] Raju IS, Newmann Jr JC. Three-dimensional nite-element analysis of nite-thickness fracture specimens. TechnicalReport NASA TND-8414, NASA Langley Research Center, Hampton, VA 23665, 1977.
[8] Shivakumar, K. N., and Raju, I. S. "An Equivalent Domain Integral Method for Three-Dimensional Mixed-Mode Fracture Problems." Engineering Fracture Mechanics, vol. 42, pp. 935-959, 1992.
[9] Ayhan, A. O. "Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates." Engineering Fracture Mechanics, vol. 71, pp. 1059-1079, 2004.
[10] Moreira, P. M. G. P., Pastrama, S. D., de Castro, P. M. S. T. "Three-dimensional stress intensity factor calibration for a stiffened cracked plate." Engineering Fracture Mechanics, vol. 76, pp. 2298-2308, 2009.
[11] Paris, P., Erdogan, F. "A Critical Analysis of Crack Propagation Laws." ASME Journal of Basic Engineering, vol. 85, pp. 528-534, 1963.
[12] Pugno, N., Ciavarella, M., Cornetti, P., Carpinteri, A. "A generalized Paris’ law for fatigue crack growth." Journal of the Mechanics and Physics of Solids, vol. 54, pp. 1333-1349, 2006.
[13] Soutis, C. "Fibre reinforced composites in aircraft construction." Progress in Aerospace Sciences, vol. 41, pp. 143-151, 2005.
[14] Davim, J. P., Reis, P., António, C. C. "Experimental study of drilling glass fiber reinforced plastics (GFRP) manufactured by hand lay-up." Composites Science and Technology, vol. 64, pp. 289-297, 2004.
[15] Sinmazçelik, T., Avcu, E., Bora, M. Ö., Çoban, O. "A review: Fibre metal laminates, background, bonding types and applied test methods." Materials and Design, vol. 32, pp. 3671-3685, 2011.
[16] Rubino, F., Nistico, A., Tucci, F., Carlone, P. "Marine application of fiber reinforced composites: a review." Journal of Marine Science and Engineering, vol. 8, p. 26, 2020.
[17] McGeorge, D., Echtermeyer, A. T., Leong, K. H., Melve, B., Robinson, M., Fischer, K. P. "Repair of floating offshore units using bonded fibre composite materials." Composites: Part A, vol. 40, pp. 1364-1380, 2009.
[18] Baker, A. A. "Repair of Cracked or Defective Metallic Aircraft Components with Advanced Fibre Composites - an Overview of Australian Work." Composite Structures, vol. 2, pp. 153-181, 1984.
[19] Baker, A. A., Callinan, R. J., Davis, M. J., Jones, R., Williams, J. G. "Repair of Mirage III aircraft using the BFRP crack-patching technique." Theoretical and Applied Fracture Mechanics, vol. 2, pp. 1-15, 1984.
[20] Baker, A. A. "Bonded composite repair of fatigue-cracked primary aircraft structure." Composite Structures, vol. 47, pp. 431-443, 1999.
[21] Bouiadjra, B. B., Belhouari, M., Serier, B. "Computation of the stress intensity factors for repaired cracks with bonded composite patch in mode I and mixed mode." Composite Structures, vol. 56, pp. 401-406, 2002.
[22] Madani, K., Touzain, S., Feaugas, X., Benguediab, M., Ratwani, M. "Numerical analysis for the determination of the stress intensity factors and crack opening displacements in plates repaired with single and double composite patches." Computational Materials Science, vol. 42, pp. 385-393, 2008.
[23] Kumar, A. M., Hakeem, S. A. "Optimum design of symmetric composite patch repair to centre cracked metallic sheet." Composite Structures, vol. 49, pp. 285-292, 2000.
[24] Makwana, A., Shaikh, A. A., Bakare, A. K., Saikrishna, C. "3D Numerical Investigation of Aluminum 2024-T3 Plate Repaired with Asymmetric and Symmetric Composite Patch." Materials Today: Proceedings, vol. 5, pp. 23638-23647, 2018.
[25] Baghdadi, M., Boualem, S., Mokadem, S., Bouchra, Z., Khacem, K. "Modeling of a cracked and repaired Al 2024T3 aircraft plate: effect of the composite patch shape on the repair performance." Frattura ed Integrità Strutturale, vol. 50, pp. 68-85, 2019.
[26] Gu, L., Kasavajhala, A. R. M., Zhao, S. "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs." Composites: Part B, vol. 42, pp. 505-510, 2011.
[27] Shi, X. H., Hu, Z., Zhang, J., Guedes Soares, C. "Ultimate strength of a cracked stiffened panel repaired by CFRP and stop holes." Ocean Engineering, vol. 226, 108850, 2021.
[28] Ramji, M., Srilakshmi, R. "Design of composite patch reinforcement applied to mixed-mode cracked panel using finite element analysis." Journal of Reinforced Plastics and Composites, vol. 31, no. 9, pp. 585-595, 2012.
[29] Sahoo, C. K., Bhatia, G. S., Arockiarajan, A. "Effect of patch-parent stacking sequence and patch stiffness on the tensile behaviour of the patch repaired carbon-glass hybrid composite." Thin-Walled Structures, vol. 179, p. 109551, 2022.
[30] Seo, D. C., Lee, J. J. "Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch." Composite Structures, vol. 57, pp. 323-330, 2002.
[31] Liu, H., Al-Mahaidi, R., Zhao, X.L. "Experimental study of fatigue crack growth behaviour in adhesively reinforced steel structures." Composite Structures, vol. 90, pp. 12-20, 2009.
[32] Chung, K. H., Yang, W. H. "Mixed mode fatigue crack growth in aluminum plates with composite patches." International Journal of Fatigue, vol. 25, pp. 325-333, 2003.
[33] Kraft, J., Fällgren, C., Vormwald, M. "Calculation of stress intensity factors from shell elements under mixed mode loading." International Journal of Fatigue, vol. 134, 105447, 2020.
[34] Şahin, H., Ayhan, A. O. "Three-Dimensional Mixed Mode Stress Intensity Factors for Inclined Elliptical Surface Cracks in Plates under Uniform Tensile Load." Procedia Structural Integrity, vol. 21, pp. 38-45, 2019.
[35] Osawa, N., Hashimoto, K., Sawamura, J., Nakai, T., Suzuki, S. "Study on shell–solid coupling FE analysis for fatigue assessment of ship structure." Marine Structures, vol. 20, pp. 143-163, 2007.
[36] Peng, Z., Song, Y., Yang, P., Hu, K. "Stress intensity factor analysis for mixed-mode fracture behavior of inclined semi-elliptical surface crack in stiffened plate under tension load." Ocean Engineering, vol. 291,116405, 2024.
[37] Newman Jr, J. C., Raju, I. S. "Stress-intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads." In: Atluri, S. N., editor. Computational Methods in the Mechanics of Fracture. Amsterdam: Elsevier; 1986. p. 311-334.
[38] Toribio, J., Matos, J. C., González, B. "Aspect ratio evolution associated with surface cracks in sheets subjected to fatigue." International Journal of Fatigue, vol. 92, pp. 588-595, 2016.
[39] Boljanović, S. "Fatigue Strength Analysis of a Semi-Elliptical Surface Crack." Scientific Technical Review, vol. 62, no. 1, pp. 10-16, 2012.
[40] Hosseini-Toudeshky, H., Mohammadi, B., Daghyani, H. R. "Mixed-mode fracture analysis of aluminium repaired panels using composite patches." Composites Science and Technology, vol. 66, pp. 188-198, 2006.