簡易檢索 / 詳目顯示

研究生: 李嘉怡
Li, Chia-Yi
論文名稱: 粒線體蛋白質輸入複合體中的錯義變異導致小頭畸形骨發育不全侏儒症伴隨毛毛樣疾病
A missense variant in mitochondrial protein import complex leads to microcephalic osteodysplastic dwarfism with moyamoya disease
指導教授: 陳芃潔
Cheng, Peng-Chieh
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 169
中文關鍵詞: TOM 複合體iPSC 衍生的內皮細胞腦血管疾病粒線體蛋白質輸入代謝重編程
外文關鍵詞: TOM complex, Moyamoya disease, iPSC-derived endothelial cells, Mitochondrial protein import, Metabolic reprogramming
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾乎所有的粒線體蛋白質在細胞質中合成後,需要透過粒線體外膜上的蛋白質輸入複合體(TOM complex)進入到粒線體,其中 TOM7 為此複合體的重要調控蛋白。粒線體蛋白質運輸系統的缺陷則會導致表型異質性高度多樣的粒線體疾病。
    利用全外顯子定序,我們在來自七個無血緣關係的家庭中,共發現九名患者皆攜帶TOMM7 p.P29L變異。所有患者均表現出小頭症、身材矮小、面部畸形以及黃斑部病變。值得注意的是,其中有五位個案出現腦血管病變。目前已知內皮細胞中的粒線體功能缺失與毛毛樣腦血管病變(moyamoya disease)相關。然而,在臨床上還沒有研究提出TOMM7 p.P29L變異會導致腦血管病變,因此我們在此研究要確立TOMM7 變異與毛毛樣腦血管疾病的關聯及其在內皮細胞中對粒線體功能的影響。
    我們利用CRISPR/Cas9建立tomm7缺失斑馬魚,觀察到其呈現腦較小、顱面異常與腦血管缺失,與患者表徵相似。為探討TOMM7 p.P29L變異的致病機制,我們利用CRISPR/Cas9技術編輯在iPSCs中敲入TOMM7變異,並將其分化為血管內皮細胞(endothelial cells)。於CRISPR/Cas9編輯的TOMM7 p.P29L同型合子內皮細胞中,我們觀察到TOM7蛋白量上升、細胞衰老活性上升,以及血管形成效率減弱。粒線體呈現異常增大且趨於圓形型態。粒線體蛋白質體分析顯示,與ATP合成及代謝相關的粒線體蛋白質顯著減少。儘管粒線體呼吸功能略有下降,來自糖解作用的ATP產生顯著增加,轉錄體分析亦顯示糖解相關基因明顯上調,顯示出代謝重編程(metabolic reprogramming)的現象。為進一步驗證其致病性,我們將患者的外周血單核細胞(PBMCs)重編程為iPSCs,並分化為血管內皮細胞。在患者來源的血管內皮細胞中,我們觀察到粒線體異常增大、皺褶(cristae)結構缺失及粒線體活性降低,並伴隨糖解作用活性上升與HK2基因及蛋白質表現增加。透過CRISPR/Cas9編輯將TOMM7 p.P29L變異校正回野生型(wild-type),可恢復部分粒線體型態與皺褶結構,並提升線粒體呼吸功能及降低糖解作用活性。總結本研究結果,我們首次將 TOMM7 p.P29L 變異與人類腦血管病變建立關聯,並證實該變異會損害內皮細胞的粒線體功能,是導致小頭骨發育不良伴隨毛毛樣腦血管病的致病基因。

    The majority of mitochondrial proteins are produced in the cytosol and transported into mitochondria through the translocase of the outer membrane (TOM) complex, where TOM7 serves a regulatory role. Disruption of this import machinery can cause phenotypically heterogeneous mitochondrial disorders. In endothelial cells, mitochondrial dysfunction has been associated with the development of moyamoya disease.
    Whole-exome sequencing revealed a recurrent TOMM7 p.P29L variant in nine patients from seven unrelated Taiwanese families. These patients consistently exhibited microcephaly, growth retardation, craniofacial dysmorphism, and macular scarring. Notably, five patients developed moyamoya disease. However, the impact of TOMM7 p.P29L variant on mitochondrial function in endothelial cells remained unknown.
    Phenotypic analysis of tomm7 knockout zebrafish revealed microcephaly, craniofacial anomalities, and absent cerebral arteries, phenocopying some of patient’s clinical symptoms. To evaluate the causality of TOMM7, we introduced the TOMM7 p.P29L variant into induced pluripotent stem cells via CRISPR/Cas9 gene editing and differentiate them into endothelial cells (iEndos). CRISPR-edited TOMM7PL/PL iEndos exhibited elevated TOM7 protein levels, increased senescence, impaired angiogenic capacity and increased enlarged, rounded mitochondria. Mitochondrial proteomes revealed reductions in proteins involved in ETC complexes and metabolic pathways. Despite modest decreased of mitochondrial respiration, glycolytic ATP production and glycolysis-related gene expression were elevated, indicating metabolic reprogramming. Patient-derived endothelial cells (patient iEndos) showed the abnormally enlarged mitochondria with disrupted cristae, reduced respiration and elevated glycolytic activity. Importantly, CRISPR/Cas9-mediated correction of the TOMM7 p.P29L variant in patient iEndos restored mitochondrial morphology, improved cristae architecture, enhanced respiratory function, and normalized glycolytic flux.
    Together, our study is the first to link the TOMM7 variant to moyamoya disease and provides strong evidence that TOMM7 p.P29L is a pathogenic variant that impairs mitochondrial function in endothelial cells, contributing to microcephalic osteodysplastic dwarfism with moyamoya disease.

    中文摘要 i Abstract ii Acknowledgement iii Table of Contents v Lists of Appendices x Abbreviations xi Chapter 1. Introduction 1 1.1 Microcephalic osteodysplastic dwarfism with moyamoya disease 1 1.1.1 Clinical features and genetics of microcephalic primordial dwarfism 1 1.1.2 Moyamoya disease is linked to mitochondrial dysfunction in endothelial cells 2 1.2 Role of TOM7 in development and mitochondrial function 4 1.2.1 Mitochondrial protein import machinery 4 1.2.2 Mitochondrial protein import defects in human diseases 5 1.2.3 Mitochondrial quality control 6 1.2.4 Previous in vivo and in vitro studies of TOM7 8 Chapter 2. Material and Methods 10 Chapter 3. Results 25 3.1 A novel TOMM7 p.P29L variant in humans 25 3.1.1 Clinical presentations of four patients from three unrelated families 25 3.1.2 TOMM7 p.P29L variant identified by whole exome sequencing 26 3.1.3 Cerebrovascular phenotypes in humans with TOMM7 p.P29L variant 29 3.2 Phenotypic studies of tomm7∆/∆ zebrafish 30 3.2.1 Generating tomm7 knockout zebrafish by CRISPR/Cas9 genome editing 30 3.2.2 tomm7∆/∆ zebrafish recapitulate patient clinical features 30 3.2.3 Mitochondrial and transcriptomic profiles in tomm7∆/∆ zebrafish 31 3.3 Functional studies of TOMM7 p.P29L variant in CRISPR-edited endothelial cells 33 3.3.1 Gene editing of iPSCs and in vitro endothelial differentiation 33 3.3.2 Deleterious effects of TOM7P29L on endothelial and mitochondrial functions 34 3.3.3 Defective protein import and metabolic imbalance in TOMM7PL/PL iEndos 36 3.3.4 Bioenergetic and transcriptomic profiles in TOMM7PL/PL iPSCs 38 3.4. Phenotypic rescue by gene correction in TOMM7 p.P29L variant 41 3.4.1 Generation of isogenic controls from patient-derived iPSCs 41 3.4.2 Normalization of vascular networks in variant-corrected patient iEndos 42 3.4.3 Mitochondrial and metabolic recovery in variant-corrected patient iEndos 43 3.4.4 No cell-type specific effects of TOMM7 p.P29L on mitochondrial respiration 44 3.5 Summary of the study 46 Chapter 4. Discussion 48 4.1 Phenotypic variability in TOMM7-variant cells 48 4.2 Metabolic alterations in TOMM7-variant cells 49 4.3 Molecular functions of TOM7P29L protein 51 4.4 Clinical insights and future prospects 52 Chapter 5. References 55 Chapter 6. Figures 61 Chapter 7. Tables 144 Chapter 8. Appendices 150

    1. Alkuraya, F.S. Primordial dwarfism: an update. Current Opinion in Endocrinology, Diabetes and Obesity 22, 55-64 (2015).
    2. Khetarpal, P., Das, S., Panigrahi, I. & Munshi, A. Primordial dwarfism: overview of clinical and genetic aspects. Mol Genet Genomics 291, 1-15 (2016).
    3. Perry, L.D., Robertson, F. & Ganesan, V. Screening for cerebrovascular disease in microcephalic osteodysplastic primordial dwarfism type II (MOPD II): an evidence-based proposal. Pediatr Neurol 48, 294-8 (2013).
    4. Bober, M.B. & Jackson, A.P. Microcephalic osteodysplastic primordial dwarfism, type II: a clinical review. Current osteoporosis reports 15, 61-69 (2017).
    5. Mertens, R. et al. The Genetic Basis of Moyamoya Disease. Transl Stroke Res 13, 25-45 (2022).
    6. Hall, J.G., Flora, C., Scott Jr, C.I., Pauli, R.M. & Tanaka, K.I. Majewski osteodysplastic primordial dwarfism type II (MOPD II): Natural history and clinical findings. American Journal of Medical Genetics Part A 130A, 55-72 (2004).
    7. Waldron, J.S. et al. Multiple intracranial aneurysms and moyamoya disease associated with microcephalic osteodysplastic primordial dwarfism type II: surgical considerations. J Neurosurg Pediatr 4, 439-44 (2009).
    8. Bober, M.B. et al. Majewski osteodysplastic primordial dwarfism type II (MOPD II): expanding the vascular phenotype. Am J Med Genet A 152a, 960-5 (2010).
    9. Abdel-Salam, G.M.H. et al. Microcephalic osteodysplastic primordial dwarfism type II: Additional nine patients with implications on phenotype and genotype correlation. Am J Med Genet A 182, 1407-1420 (2020).
    10. Duker, A.L. et al. Microcephalic osteodysplastic primordial dwarfism type II is associated with global vascular disease. Orphanet J Rare Dis 16, 231 (2021).
    11. Willems, M. et al. Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families. Journal of medical genetics 47, 797-802 (2010).
    12. Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nature genetics 40, 232-236 (2008).
    13. Chen, C.-T. et al. A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation. Current Biology 24, 2327-2334 (2014).
    14. Bang, G.M., Kirmani, S., Patton, A., Pulido, J.S. & Brodsky, M.C. "Ocular moyamoya" syndrome in a patient with features of microcephalic osteodysplastic primordial dwarfism type II. J aapos 17, 100-2 (2013).
    15. Chen, P.-C., Yang, S.-H., Chien, K.-L., Tsai, I.J. & Kuo, M.-F. Epidemiology of Moyamoya Disease in Taiwan. Stroke 45, 1258-1263 (2014).
    16. Chen, P.C., Yang, S.H., Chien, K.L., Tsai, I.J. & Kuo, M.F. Epidemiology of moyamoya disease in Taiwan: a nationwide population-based study. Stroke 45, 1258-63 (2014).
    17. Tinelli, F. et al. Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. Int J Mol Sci 21(2020).
    18. Narducci, A., Yasuyuki, K., Onken, J., Blecharz, K. & Vajkoczy, P. In vivo demonstration of blood-brain barrier impairment in Moyamoya disease. Acta Neurochirurgica 161, 371-378 (2019).
    19. Tokairin, K. et al. Vascular Smooth Muscle Cell Derived from IPS Cell of Moyamoya Disease - Comparative Characterization with Endothelial Cell Transcriptome. Journal of Stroke and Cerebrovascular Diseases 29(2020).
    20. Fujimura, M. et al. Genetics and Biomarkers of Moyamoya Disease: Significance of RNF213 as a Susceptibility Gene. J Stroke 16, 65-72 (2014).
    21. Hitomi, T. et al. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients. Biochemical and Biophysical Research Communications 438, 13-19 (2013).
    22. Choi, J.W. et al. Mitochondrial abnormalities related to the dysfunction of circulating endothelial colony-forming cells in moyamoya disease. J Neurosurg 129, 1151-1159 (2018).
    23. Wang, X. et al. Proteomic Profiling of Exosomes From Hemorrhagic Moyamoya Disease and Dysfunction of Mitochondria in Endothelial Cells. Stroke 52, 3351-3361 (2021).
    24. Xu, S. et al. Transcriptomic Profiling of Intracranial Arteries in Adult Patients With Moyamoya Disease Reveals Novel Insights Into Its Pathogenesis. Front Mol Neurosci 15, 881954 (2022).
    25. Morgenstern, M. et al. Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale. Cell Rep 19, 2836-2852 (2017).
    26. Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell 138, 628-644 (2009).
    27. Kiebler, M. et al. Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348, 610-6 (1990).
    28. Wang, W. et al. Atomic structure of human TOM core complex. Cell Discovery 6, 67 (2020).
    29. Ahting, U. et al. The Tom Core Complex: The General Protein Import Pore of the Outer Membrane of Mitochondria. Journal of Cell Biology 147, 959-968 (1999).
    30. Neupert, W. & Herrmann, J.M. Translocation of Proteins into Mitochondria. Annual Review of Biochemistry 76, 723-749 (2007).
    31. Johnston, A.J. et al. Insertion and Assembly of Human Tom7 into the Preprotein Translocase Complex of the Outer Mitochondrial Membrane*. Journal of Biological Chemistry 277, 42197-42204 (2002).
    32. Model, K. et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Biol 8, 361-70 (2001).
    33. Becker, T. et al. Biogenesis of Mitochondria: Dual Role of Tom7 in Modulating Assembly of the Preprotein Translocase of the Outer Membrane. Journal of Molecular Biology 405, 113-124 (2011).
    34. Wiedemann, N. et al. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565-571 (2003).
    35. Kato, H. & Mihara, K. Identification of Tom5 and Tom6 in the preprotein translocase complex of human mitochondrial outer membrane. Biochem Biophys Res Commun 369, 958-63 (2008).
    36. Hönlinger, A. et al. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. Embo j 15, 2125-37 (1996).
    37. Allen, R., Egan, B., Gabriel, K., Beilharz, T. & Lithgow, T. A conserved proline residue is present in the transmembrane-spanning domain of Tom7 and other tail-anchored protein subunits of the TOM translocase. FEBS letters 514, 347-350 (2002).
    38. Russell, O.M., Gorman, G.S., Lightowlers, R.N. & Turnbull, D.M. Mitochondrial Diseases: Hope for the Future. Cell 181, 168-188 (2020).
    39. Stenton, S.L. & Prokisch, H. Genetics of mitochondrial diseases: Identifying mutations to help diagnosis. EBioMedicine 56, 102784 (2020).
    40. Chen, L. et al. Mitochondrial heterogeneity in diseases. Signal Transduction and Targeted Therapy 8, 311 (2023).
    41. Palmer, C.S., Anderson, A.J. & Stojanovski, D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Letters 595, 1107-1131 (2021).
    42. Zhao, Y. et al. Metaxins are core components of mitochondrial transport adaptor complexes. Nature Communications 12, 83 (2021).
    43. Wei, X. et al. Mutations in TOMM70 lead to multi-OXPHOS deficiencies and cause severe anemia, lactic acidosis, and developmental delay. Journal of Human Genetics 65, 231-240 (2020).
    44. Dutta, D. et al. De novo mutations in TOMM70, a receptor of the mitochondrial import translocase, cause neurological impairment. Human Molecular Genetics 29, 1568-1579 (2020).
    45. Young, C. et al. A hypomorphic variant in the translocase of the outer mitochondrial membrane complex subunit TOMM7 causes short stature and developmental delay. HGG Adv 4, 100148 (2023).
    46. Garg, A. et al. Autosomal recessive progeroid syndrome due to homozygosity for a TOMM7 variant. J Clin Invest 132(2022).
    47. Pfanner, N., Warscheid, B. & Wiedemann, N. Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology 20, 267-284 (2019).
    48. Spinelli, J.B. & Haigis, M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology 20, 745-754 (2018).
    49. Zhou, H., He, L., Xu, G. & Chen, L. Mitophagy in cardiovascular disease. Clinica Chimica Acta 507, 210-218 (2020).
    50. Deas, E. et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Human molecular genetics 20, 867-879 (2011).
    51. Yamano, K. & Youle, R.J. PINK1 is degraded through the N-end rule pathway. Autophagy 9, 1758-1769 (2013).
    52. Hasson, S.A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291-295 (2013).
    53. Raimi, O.G. et al. Mechanism of human PINK1 activation at the TOM complex in a reconstituted system. Science Advances 10, eadn7191 (2024).
    54. Hasson, S.A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291-295 (2013).
    55. Sekine, S. et al. Reciprocal Roles of Tom7 and OMA1 during Mitochondrial Import and Activation of PINK1. Mol Cell 73, 1028-1043.e5 (2019).
    56. Sekine, S. et al. Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Molecular cell 73, 1028-1043. e5 (2019).
    57. Shi, D. et al. Endothelial Mitochondrial Preprotein Translocase Tomm7-Rac1 Signaling Axis Dominates Cerebrovascular Network Homeostasis. Arteriosclerosis, Thrombosis, and Vascular Biology 38, 2665-2677 (2018).
    58. Wu, Y.T. et al. Defining minimum essential factors to derive highly pure human endothelial cells from iPS/ES cells in an animal substance-free system. Sci Rep 5, 9718 (2015).
    59. Itoh, M. et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One 8, e77673 (2013).
    60. Chen, W.J., Huang, F.C. & Shih, M.H. Ocular characteristics in a variant microcephalic primordial dwarfism type II. BMC Pediatr 19, 329 (2019).
    61. Wang, X. et al. Association of Genetic Variants With Moyamoya Disease in 13 000 Individuals: A Meta-Analysis. Stroke 51, 1647-1655 (2020).
    62. Allen, R., Egan, B., Gabriel, K., Beilharz, T. & Lithgow, T. A conserved proline residue is present in the transmembrane-spanning domain of Tom7 and other tail-anchored protein subunits of the TOM translocase. FEBS Lett 514, 347-50 (2002).
    63. Zavrtanik, U. et al. Leucine Motifs Stabilize Residual Helical Structure in Disordered Proteins. Journal of Molecular Biology 436, 168444 (2024).
    64. Allen, R., Egan, B., Gabriel, K., Beilharz, T. & Lithgow, T. A conserved proline residue is present in the transmembrane-spanning domain of Tom7 and other tail-anchored protein subunits of the TOM translocase. FEBS Letters 514, 347-350 (2002).
    65. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 17, 405-424 (2015).
    66. Richards, C.S. et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med 10, 294-300 (2008).
    67. Hoshijima, K. et al. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Dev Cell 51, 645-657.e4 (2019).
    68. Shwartz, Y., Farkas, Z., Stern, T., Aszódi, A. & Zelzer, E. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension. Dev Biol 370, 154-63 (2012).
    69. Kimmel, C.B. et al. The shaping of pharyngeal cartilages during early development of the zebrafish. Dev Biol 203, 245-63 (1998).
    70. Wu, Y.-T. et al. Defining Minimum Essential Factors to Derive Highly Pure Human Endothelial Cells from iPS/ES Cells in an Animal Substance-Free System. Scientific Reports 5, 9718 (2015).
    71. Rubalcava-Gracia, D. et al. LRPPRC and SLIRP synergize to maintain sufficient and orderly mammalian mitochondrial translation. Nucleic Acids Res 52, 11266-11282 (2024).
    72. Thayer, J.A. et al. Novel reporter of the PINK1-Parkin mitophagy pathway identifies its damage sensor in the import gate. bioRxiv, 2025.02.19.639160 (2025).
    73. Bonder, M.J. et al. Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics. Nature Genetics 53, 313-321 (2021).
    74. Heine, K.B., Parry, H.A. & Hood, W.R. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol 324, R242-r248 (2023).
    75. Eelen, G. et al. Endothelial Cell Metabolism. Physiological Reviews 98, 3-58 (2018).
    76. Dumas, S.J., García-Caballero, M. & Carmeliet, P. Metabolic Signatures of Distinct Endothelial Phenotypes. Trends in Endocrinology & Metabolism 31, 580-595 (2020).
    77. Vincent, Emma E. et al. Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth. Molecular Cell 60, 195-207 (2015).
    78. Ryu, K.W. et al. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 635, 746-754 (2024).
    79. Anselmi, C., Davies, K.M. & Faraldo-Gómez, J.D. ­­Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force­. Journal of General Physiology 150, 763-770 (2018).
    80. Waters, P.J. Degradation of Mutant Proteins, Underlying "Loss of Function" Phenotypes, Plays a Major Role in Genetic Disease. Current Issues in Molecular Biology 3, 57-65 (2001).
    81. Chakrabarti, O., Rane, N.S. & Hegde, R.S. Cytosolic aggregates perturb the degradation of nontranslocated secretory and membrane proteins. Mol Biol Cell 22, 1625-37 (2011).
    82. Dipple, K.M. & McCabe, E.R.B. Phenotypes of Patients with “Simple” Mendelian Disorders Are Complex Traits: Thresholds, Modifiers, and Systems Dynamics. The American Journal of Human Genetics 66, 1729-1735 (2000).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE