| 研究生: |
陳芳君 Chen, Fang-Chun |
|---|---|
| 論文名稱: |
驗証影響氫鍵的兩個因素:
重新混成與負超共軛 Re-examination of the two factors affecting H-bonding:Rehybridization and Hyperconjugation |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 氫鍵 、重新混成 、負超共軛 |
| 外文關鍵詞: | rehybridization, hydrogen bond, hyperconjugation |
| 相關次數: | 點閱:138 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用Gaussian98軟體,以B3LYP/6-31G*的方法,去計算甲烷上以鹵素原子取代氫,C-H鍵長的變化;以及當氫鍵接受體靠近時,C-H鍵長的變化。去驗證Weinhold提出該鍵長是由於氫鍵接受體對C-H鍵結的負超共軛及C-H鍵的重新混成所達成平衡下的結果。
在單純鹵烷分子存在下,其鍵長主要是受到C-H鍵中C的s character的因素主宰。當有氫鍵接受體靠近時,在距離尚遠時,C-H鍵長不僅沒有伸長,有的甚至隨著距離的靠近而縮短鍵長,這是由於重新混成的效用超越了負超共軛的影響;當距離靠近到ㄧ定的程度,C-H鍵長急遽的增加,由於負超共軛的影響超越了重新混成的效用。若比較不同的氫鍵接受體,其鍵長主要由氫鍵接受體對C-H鍵結的負超共軛,E(2)值決定,甚至呈線性關係。當氫鍵接受體相同,僅改變氫鍵予體C原子的取代基,發現這對鍵長幾乎不影響;若將中心原子改變,依然與E(2)值呈線性關係,不過受影響的程度不同,中心原子電負度越小者受影響越顯著。
Weinhold and co-workers suggested the X-H bond length in X-H…Y hydrogen bonded complexes is controlled by a balance of two main factors acting in opposite directions. One is n(Y)→σ*(X-H) hyperconjugative interaction leading to X-H bond lengthening, and the other is rehybridization leading to X-H bond shortening. We concentrate on the C-H bond length of methane substituted by halogens. All computations are performed using Gaussian98 program, and all discussions in this paper are based on B3LYP/6-31+G* calculations.
Without hydrogen bond acceptors, the C-H bond length is mainly affected by s-character of C atom. When hydrogen bond acceptor is present, at larger distance, the C-H bond length shortening is due to the increase in the s-character of the C-H bond, and at shorter distance, the C-H bond length lengthening is due to n(Y)→σ*(X-H) hyperconjugative interaction. If we change with different hydrogen bond acceptors(Y), the C-H bond length is mainly affected by hyperconjugative interaction. The C-H bond length even has linear relation with E(2). If we use the same hydrogen bond acceptor(Y), the C-H bond length keeps the same in spite of different substitutions on C atom of methane. If we change the central atom, the C-H bond length still has linear relation with E(2), but the slope is different. The larger electronegativity of the central atom is, the smaller the slope is.
1. Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Inorganic Chemistry; Harper Collins, 1993,4th.
2. Allerhand, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1963, 85, 1715.
3. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858.
(b) Boldeskul, I.E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct.1997, 436, 167.
4. (a) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H.D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180.
(b) Reimann, B.; Buchhold,K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001,105, 5560.
5. Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem.Soc. 2002, 124, 11 854-11 855.
6. Hobza, P.; Sÿpirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998,102, 2501. Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447.
7. Hobza, P.; Havlas, Z. Chem. ReV. 2000, 100, 4253.
8. Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639.
9. (a) Fang, Y.; Fan, J. M.; Liu, L.; Li, X. S., Guo, Q. X. Chem. Lett. 2002, 116.
(b)Fan, J. M.; Liu, L.; Guo, Q. X. Chem. Phys. Lett. 2002, 365, 464.
10. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973.
11. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
12. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736
13. (a) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105,10 607.
(b) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784.
14. Gu, Y.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411.
15. Cubero, E.; Orozco, M.; Hobza, P.; Luque, F. J. J. Phys. Chem. A 1999,103, 6394.
16. (a) Liu, S. Y.; Dykstra, C. E.; Malik, D. J. Chem. Phys. Lett. 1986, 130, 403.46.
(b) Liu, S.; Dykstra, C. E. J. Phys. Chem. 1986, 90, 3097.
(c) Liu, S. Y.; Dykstra,C. E. Chem. Phys. Lett. 1987, 136, 22.
(d) Dykstra, C. E. Acc. Chem. Res.1988, 21, 355.
(e)Parish, C. A.; Dykstra, C. E. J. Phys. Chem. 1993, 97,9374.
17. Masunov, A.; Dannenberg, J. J., Contreras, R. H. J. Phys. Chem. A. 2001,105, 4737.
18. (a) Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864.
(b) Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.
(c) Salahub, D. R. ; Zerner, M. C. Eds. The The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
(d) Parr R. G.; Yang W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
19. Becke, A. D. Phys. Rev. 1988, A38, 3098.
20. Lee, C.; Yang, W.; Parr, R. G. Phys Rev. B 1988, 37, 785.
21. Gordon, M. S.; Binkley, J. S.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.
22. Reed, A. E.; Weinstock R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
23. (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687.
(c) Weinhold, F. J. Mol. Struct. 1997, 181, 398.
(d) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320.
(e) Hobza, P.; Šponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000,104, 6286.
(f) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct. 2000, 507, 153.
(g) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Špirko, V.; Hobza, P. J. Phys. Chem. A 2001, 105, 5560.
(h) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49.
(i) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. 2001, 543, 285.
(j) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004.
(k) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070.
24.(a) Bent, H. A. J. Chem. Educ. 1960, 37, 616-624.
(b) Bent, H. A. J. Chem. Rev. 1961, 61, 275-331.