簡易檢索 / 詳目顯示

研究生: 陳芳君
Chen, Fang-Chun
論文名稱: 驗証影響氫鍵的兩個因素: 重新混成與負超共軛
Re-examination of the two factors affecting H-bonding:Rehybridization and Hyperconjugation
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: 氫鍵重新混成負超共軛
外文關鍵詞: rehybridization, hydrogen bond, hyperconjugation
相關次數: 點閱:138下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用Gaussian98軟體,以B3LYP/6-31G*的方法,去計算甲烷上以鹵素原子取代氫,C-H鍵長的變化;以及當氫鍵接受體靠近時,C-H鍵長的變化。去驗證Weinhold提出該鍵長是由於氫鍵接受體對C-H鍵結的負超共軛及C-H鍵的重新混成所達成平衡下的結果。
    在單純鹵烷分子存在下,其鍵長主要是受到C-H鍵中C的s character的因素主宰。當有氫鍵接受體靠近時,在距離尚遠時,C-H鍵長不僅沒有伸長,有的甚至隨著距離的靠近而縮短鍵長,這是由於重新混成的效用超越了負超共軛的影響;當距離靠近到ㄧ定的程度,C-H鍵長急遽的增加,由於負超共軛的影響超越了重新混成的效用。若比較不同的氫鍵接受體,其鍵長主要由氫鍵接受體對C-H鍵結的負超共軛,E(2)值決定,甚至呈線性關係。當氫鍵接受體相同,僅改變氫鍵予體C原子的取代基,發現這對鍵長幾乎不影響;若將中心原子改變,依然與E(2)值呈線性關係,不過受影響的程度不同,中心原子電負度越小者受影響越顯著。

    Weinhold and co-workers suggested the X-H bond length in X-H…Y hydrogen bonded complexes is controlled by a balance of two main factors acting in opposite directions. One is n(Y)→σ*(X-H) hyperconjugative interaction leading to X-H bond lengthening, and the other is rehybridization leading to X-H bond shortening. We concentrate on the C-H bond length of methane substituted by halogens. All computations are performed using Gaussian98 program, and all discussions in this paper are based on B3LYP/6-31+G* calculations.
    Without hydrogen bond acceptors, the C-H bond length is mainly affected by s-character of C atom. When hydrogen bond acceptor is present, at larger distance, the C-H bond length shortening is due to the increase in the s-character of the C-H bond, and at shorter distance, the C-H bond length lengthening is due to n(Y)→σ*(X-H) hyperconjugative interaction. If we change with different hydrogen bond acceptors(Y), the C-H bond length is mainly affected by hyperconjugative interaction. The C-H bond length even has linear relation with E(2). If we use the same hydrogen bond acceptor(Y), the C-H bond length keeps the same in spite of different substitutions on C atom of methane. If we change the central atom, the C-H bond length still has linear relation with E(2), but the slope is different. The larger electronegativity of the central atom is, the smaller the slope is.

    摘要 Abstract 誌謝 目錄 表目錄 圖目錄 第一章 緒論………………………………………………………………1 第二章 理論背景…………………………………………………………3 2-1 Bent’s rule………………………………………………………..3 2-2 相關研究歷程簡介………………………………………………6 2-3 氫鍵………………………………………………………………7 2-4 理論計算…………………………………………………………8 2-4-1 DFT………………………………………………………8 2-4-2 基底……………………………………………………10 2-4-3 分裂 (split) 基底………………………………………10 2-4-4 極化函數 ( polarization function )……………………11 2-4-5 擴散函數 ( diffuse function )………………………….12 2-5 天然鍵性軌域…………………………………………………12 第三章 計算方法………………………………………………………17 3-1 選用軟體與計算條件…………………………………………17 3-2 計算流程………………………………………………………17 第四章 結果與討論……………………………………………………19 4-1 典型氫鍵與非典型氫鍵………………………………………19 4-2 滷烷的C-H鍵長……………………………………………21 4-2-1 單一取代的鹵化甲烷…………………………………21 4-2-2 多取代的鹵烷…………………………………………23 4-2-3 改變甲烷中氯原子的取代數量………………………26 4-2-4 氯仿在三鹵化烷中的特異性…………………………29 4-3 在F3C-H…Y複合體中的C-H鍵長………………………30 4-3-1 C-H鍵長……………………………………………30 4-3-2 負超共軛的現象(Hyperconjugation)………………36 4-3-3 重新混成(Rehybridization)/重新極化(Repolarization)………………………………….34 4-3-4 負超共軛(Hyperconjugation)與重新混成(Rehybridization)/重新極化(Repolarization)對C-H鍵長的影響…………………………….………42 4-4 在Cl3C-H…Y複合體中的C-H鍵長………..…………40 4-5 在Br3C-H…Y複合體中的C-H鍵長………………………44 4-6 不同氫鍵接受者對於在C-H…Y中,對於C-H鍵長的影響……………………………………………………………….48 4-7 氫鍵予體對於在C-H…Y中,對於C-H鍵長的影響………49 4-8 改變氫鍵予體的中心原子,對於X-H…Y中,X-H鍵長的影響……………………………………………………………51 第五章 結論………………………………………………………….…56 第六章 參考文獻…………………………………………………….…57

    1. Huheey, J. E.; Keiter, E. A.; Keiter, R. L.; Inorganic Chemistry; Harper Collins, 1993,4th.
    2. Allerhand, A.; Schleyer, P. v. R. J. Am. Chem. Soc. 1963, 85, 1715.
    3. (a) Budesinsky, M.; Fiedler, P.; Arnold, Z. Synthesis 1989, 858.
    (b) Boldeskul, I.E.; Tsymbal, I. F.; Ryltsev, E. V.; Latajka, Z.; Barnes, A. J. J. Mol. Struct.1997, 436, 167.
    4. (a) Hobza, P.; Sÿpirko, V.; Havlas, Z.; Buchhold, K.; Reimann, B.; Barth, H.D.; Brutschy, B. Chem. Phys. Lett. 1999, 299, 180.
    (b) Reimann, B.; Buchhold,K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Hobza, P. J. Phys. Chem. A. 2001,105, 5560.
    5. Delanoye, S. N.; Herrebout, W. A.; van der Veken, B. J. J. Am. Chem.Soc. 2002, 124, 11 854-11 855.
    6. Hobza, P.; Sÿpirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998,102, 2501. Hobza, P.; Havlas, Z. Chem. Phys. Lett. 1999, 303, 447.
    7. Hobza, P.; Havlas, Z. Chem. ReV. 2000, 100, 4253.
    8. Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639.
    9. (a) Fang, Y.; Fan, J. M.; Liu, L.; Li, X. S., Guo, Q. X. Chem. Lett. 2002, 116.
    (b)Fan, J. M.; Liu, L.; Guo, Q. X. Chem. Phys. Lett. 2002, 365, 464.
    10. Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F. J. Am. Chem. Soc. 2003, 125, 5973.
    11. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
    12. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736
    13. (a) Scheiner, S.; Grabowski, S. J.; Kar, T. J. Phys. Chem. A 2001, 105,10 607.
    (b) Scheiner, S.; Kar, T. J. Phys. Chem. A 2002, 106, 1784.
    14. Gu, Y.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411.
    15. Cubero, E.; Orozco, M.; Hobza, P.; Luque, F. J. J. Phys. Chem. A 1999,103, 6394.
    16. (a) Liu, S. Y.; Dykstra, C. E.; Malik, D. J. Chem. Phys. Lett. 1986, 130, 403.46.
    (b) Liu, S.; Dykstra, C. E. J. Phys. Chem. 1986, 90, 3097.
    (c) Liu, S. Y.; Dykstra,C. E. Chem. Phys. Lett. 1987, 136, 22.
    (d) Dykstra, C. E. Acc. Chem. Res.1988, 21, 355.
    (e)Parish, C. A.; Dykstra, C. E. J. Phys. Chem. 1993, 97,9374.
    17. Masunov, A.; Dannenberg, J. J., Contreras, R. H. J. Phys. Chem. A. 2001,105, 4737.
    18. (a) Hohenberg, P.; Kohn, W. Physical Review 1964, 136, B864.
    (b) Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133.
    (c) Salahub, D. R. ; Zerner, M. C. Eds. The The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
    (d) Parr R. G.; Yang W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
    19. Becke, A. D. Phys. Rev. 1988, A38, 3098.
    20. Lee, C.; Yang, W.; Parr, R. G. Phys Rev. B 1988, 37, 785.
    21. Gordon, M. S.; Binkley, J. S.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.
    22. Reed, A. E.; Weinstock R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
    23. (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
    (b) Reed, A. E.; Weinhold, F. J. Chem. Phys. 1986, 84, 5687.
    (c) Weinhold, F. J. Mol. Struct. 1997, 181, 398.
    (d) Mitzel, N. W.; Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320.
    (e) Hobza, P.; Šponer, J.; Cubero, E.; Orozco, M.; Luque, F. J. J. Phys. Chem. B 2000,104, 6286.
    (f) Wong, N. B.; Cheung, Y. S.; Wu, D. Y.; Ren, Y.; Wang, X.; Tian, A. M.; Li, W. A. J. Mol. Struct. 2000, 507, 153.
    (g) Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Špirko, V.; Hobza, P. J. Phys. Chem. A 2001, 105, 5560.
    (h) Ananthavel, S. P.; Manoharan, M. Chem. Phys. 2001, 269, 49.
    (i) Aubauer, C.; Klapotke, T. M.; Schulz, A. J. Mol. Strust. 2001, 543, 285.
    (j) Yang, W.; Drueckhammer, D. G. J. Am. Chem. Soc. 2001, 123, 11004.
    (k) Anane, H.; Boutalib, A.; Nebot-Gil I.; Tomas, F. J. Phys. Chem. A 1998, 102, 7070.
    24.(a) Bent, H. A. J. Chem. Educ. 1960, 37, 616-624.
    (b) Bent, H. A. J. Chem. Rev. 1961, 61, 275-331.

    下載圖示 校內:2007-07-31公開
    校外:2007-07-31公開
    QR CODE