| 研究生: |
柯恒鎧 Ko, Heng-Kai |
|---|---|
| 論文名稱: |
後燃效應對固態火箭尾焰超音速高溫兩相衝擊流場影響之數值模擬分析 Numerical Simulation of Afterburning Influence on Supersonic and High-Temperature Two-Phase Impingement Flow Field of the Solid Rocket Plume |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 超音速衝擊流場 、兩相流 、後燃效應 、熱傳分析 |
| 外文關鍵詞: | Supersonic impinging jet, Particle-gas flows, Afterburning, Heat transfer analysis |
| 相關次數: | 點閱:168 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
垂直發射系統為現今各國廣泛使用的艦載飛彈系統,因為垂直發射系統改善了許多傾斜式發射系統的缺點,然而垂直發射系統兼具較多優勢,但面臨的挑戰也隨之而來,如固態火箭發射時所產生的高溫尾焰衝擊至擋板時的熱負荷,可能會造成發射箱結構上的損壞,故本研究將使用數值模擬的方式,針對衝擊壁面進行熱傳評估,用於未來研究熱防護材料。
固態火箭通常會在推進劑中添加金屬鋁粉藉此增加推力,而這些鋁粉燃燒過後會以高溫的氧化鋁粒子存在於尾焰流場中,造成衝擊壁面上的燒、沖蝕效應,在超音速流場中可能含有燃燒未完全的產物,而這些產物可以與環境中的空氣再進行氧化反應,預期後燃效應對於流場及壁面熱傳的評估會有一定的影響性,故本研究透過相關文獻及參數,藉此探討後燃效應對於衝擊壁面的影響。首先,針對小型固態火箭進行分析,探討有、無化學反應之影響,研究發現氣流場經過震波內產生解離的現象,使氣體需要吸收能量,氧化鋁粒子在撞擊到壁面前的溫度降低,導致壁面上的熱通量較小,而在艙體內之低速區會有重組的現象,造成艙體內的氣體溫度有上升的趨勢。由於固態火箭之尾焰為高溫流場,故需要考慮輻射效應之影響,在輻射效應下,有、無化學反應對於壁面輻射熱通量皆非常微小,僅佔總熱通量的2%左右,而熱傳導為主導熱通量趨勢的主因,另外,艙體內的燃氣處於高溫的狀態,使氣體與粒子所能釋放的輻射能較多,造成壁面輻射熱通量的提升。根據上述之結果,觀察到輻射效應對於整體壁面的影響皆十分微小,因此探討模型尺寸之差異及後燃效應,專注在壁面之輻射熱通量的評估,研究結果指出,大尺寸之後燃效應的影響與小尺寸艙體內之流場結果相似,觀測壁面上之輻射熱通量,後燃效應所造成的影響僅些微差距,而模型尺寸越大,其輻射熱通量也越大,故評估壁面之輻射熱通量的重要性也隨之提高。
The vertical launching system (VLS) is a shipborne missile system which is being widely used in various countries, just because the vertical launching system improves many kinds of shortcomings of the guided missile launching system (GMLS). However, the VLS has many such advantages, but the actual challenges it faces also will come into consideration. For example, the high-temperature plume generated when the missile is launched and the thermal load when impinging on the baffle may identically cause structural damage to the launch box. Therefore, this study will mainly use numerical simulation to evaluate the heat transfer of the impinged wall, which will be necessarily used for future research on thermal protection materials.
Solid rocket usually adds aluminum powder to the propellant to gradually increase the thrust. After these metal powders are burned, they will exhaust in the plume flow field as high-temperature alumina particles, causing ablation and erosion on the impinged wall. In supersonic flow filed, the plume may also contain few incomplete combustion products and these products essentially can re-oxidize with the air surrounded in the environment. It is expected that the afterburning effect will have a certain influence on the evaluation of the flow field and wall heat transfer. Therefore, this study explores the influence of the afterburning effect on the impinged wall through the relevant references and parameters. Initially, the subscale solid rocket was analyzed to explore the influence of chemical reaction. The research results had found that the airflow field will dissociate through the shock wave and made the gas need to absorb energy. The temperature of the alumina particles decreases before they impinge the wall, resulting in less heat flux on the wall. Later, the gas will be recombination in the low-speed area in the cabin, causing the gas temperature rise in the cabin, because of the plume of a solid rocket is a high-temperature flow field, it was very much necessary to consider the influence of radiation effect. Under the radiation effect, the chemical for the radiative heat flux on the wall was as well very minimal, accounting just for about 2% of the total heat flux. The main factor that dominated the heat flux was heat conduction. In addition, the gas was in a high-temperature state in the cabin, so that the gas and particles could release more radiant energy, resulting in an increased manner in the radiative heat flux of the wall. According to the above results, it was basically observed that the influence of the radiation effect on the overall wall was relatively very small. Therefore, the difference size in the model and afterburning was discussed, focusing on the evaluation of the radiative heat flux of the wall. The result showed that the influence of afterburning effect of large scale is equally similar to the result of flow field in subscale. Observing the radiative heat flux on the wall, the influence of the afterburning effect was slightly different, the larger model size led to the greater radiative heat flux, so the importance of evaluating the radiative heat flux on the wall was also increased.
【1】https://www.seaforces.org/wpnsys/SURFACE/Mk-13-missile-launcher.htm
【2】https://www.seaforces.org/wpnsys/SURFACE/Mk-41-missile-launcher.htm
【3】Sutton G.P., Biblarz O. (2001), Rocket Propulsion Elements (7th Edition), New York:John Wiley & Sons, Inc.
【4】徐文奇,“垂直發射裝置中燃氣兩相衝擊流場數值研究”, 哈爾濱工程大學航天工程系碩士論文, 2007.
【5】Lee K. S, Hong S. K., “Supersonic Jet Impingement Navier-Stokes Computations for Vertical Launching System Design Applications”, Journal of Spacecraft and Rockets, Vol.41, No.5, October 2004.
【6】Nobuyuki T., A. Koichi H., Toshi F, Kazuo A., Masaru k., “Numerical Simulation of a Supersonic Jet Impingement on a Ground”, Journal of Aerospace, Vol. 100, Section 1, pp. 2168-2180, 1991.
【7】陳韋丞,“超音速高溫氣體衝擊擋板之數值模擬分析”, 成功大學航空太空工程學系碩士論文,2019.
【8】Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, pp.1598-1605, 1994.
【9】宋緯倫,“不同紊流模式對超音速流場數值模擬結果之影響”, 成功大學航空太空工程學系碩士論文, 2010.
【10】郭忠義,“超音速高溫兩相流衝擊流場之模擬分析”, 成功大學航空太空工程學系碩士論文,2020.
【11】Troyes J., Dubois I., Borie V., Boischot A., “Multi-phase Reactive Numerical Simulations of a Model Solid Rocket Motor Exhaust Jet”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 2006.
【12】Ma Y.J., Bao F.T., Xu H., Sun L., “Numerical Simulation of Solid Propellant Rocket Exhaust Plume Considering Two-Phase Flow Effects”, Applied Mechanics and Materials, Vol. 798, pp 185-189, October 2015.
【13】Binauld Q., “Numerical Simulation of Radiation in High Altitude Solid Propellant Rocket Plumes”, 7th EUCASS Advances in Aerospace Sciences, June 2017.
【14】Li Z., Wang N., Shi B., Li S., Yang R., “Effects of Particle Size on Two-Phase Flow Loss in Aluminized Solid Rocket Motors”, Acta Astronautic 159, pp.33-40,2019.
【15】林章裕, 林文山, 謝啟訓,“固態燃料推進器尾焰對於銅板之沖蝕試驗及熱傳模擬”, 中華民國第27屆燃燒與能源學術研討會,論文編號016, April 2017.
【16】Jung J., Brewster M. Q., “Radiative Heat Transfer Analysis with Molten Al2O3 Dispersion in Solid Rocket Motors”, journal of spacecraft and rockets, September – October 2008.
【17】Ko J., Lee E., Kwon S., “Influence of Optical Properties of Alumina Particles on the Radiative Base Heating from Solid Rocket Plume”, Advances in Space Research 64, pp.514-526, May 2019.
【18】Zhang X., Chen H., “Numerical Study on Similarity of Plume Infrared Radiation between Reduced-Scale Solid Rocket Motors”, Chinese Journal of Aeronautic, Volume 29, Issue 4, pp.924-933, August 2016.
【19】Wang W., Li S., Zhang Q., Wang N., “Infrared Radiation Signature of Exhaust Plume from Solid Propellants with Different Energy Characteristics”, Chinese Journal of Aeronautic, Volume 26, Issue 3, pp.594-600, June 2013.
【20】Li Z., Xiang H., “Numerical Simulation of the Reactive Two-Phase Solid Rocket Motor Exhaust Plume”, 2nd International Conference on Computer Science and Electronics Engineering, March 2013.
【21】徐翔澔,“熱輻射對超音速高溫兩相衝擊流場影響之數值模擬分析”, 成功大學航空太空工程學系碩士論文,2021.
【22】ttps://www.academia.edu/3196299/ANSYS_Fluent_Heat_Transfer_Modeling
【23】ANSYS FLUENT 19.0 theory guide, ANSYS Inc.,2019
【24】https://history.nasa.gov/SP-4103/app-f.htm
【25】https://wemp.app/posts/7ab6bb75-ece1-4d72-a433-ee4fe5bf0e0a
【26】蔡昊翰,“液態多孔噴注交互作用對超音速燃燒流場影響之數值模擬分析”, 成功大學航空太空工程學系碩士論文, 2018.
【27】楊成麥,“噴霧模式之參數對液態燃料注入超音速流場數值模擬分析影響之研究”, 成功大學航空太空工程學系碩士論文, 2019.
【28】Marigliani L., “Numerical Analysis of Solid Rocket Motor Plume Radiative Heat Transfer at Low Altitude”, Master Thesis, Politecnico Di Milano, 2016.