簡易檢索 / 詳目顯示

研究生: 賴岳群
Lai, Yueh-Chun
論文名稱: 磊晶過程之晶邊接觸問題數值分析
Numerical Analysis of Edge Contact on Silicon Wafer in Epitaxial Growth Process
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 磊晶製程滑移系統分解剪應力
外文關鍵詞: Epitaxial Process, Silicon, Slip System, Resolved Shear Stress
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用有限元素數值分析方法探討磊晶過程中矽基板晶邊接觸應力問題。為了改善基板與載台在磊晶過程中,因接觸應力導致矽基板產生缺陷,設計了四種晶邊幾何形狀,並使用ABAQUS有限元素法分析軟體進行動態分析,建立數值模型模擬磊晶過程中載台旋轉與基板接觸之運動,得到矽基板應力分佈與歷程。透過座標轉換將數值分析之結果轉換至滑移系統上之分解剪應力,並觀察表面分解剪應力的大小與分佈,以此為準則判斷晶邊幾何形狀的優劣。我們發現當矽基板之斜切長度較長時,表面分解剪應力之大小與分佈範圍會比斜切長度較短者小。斜切角度對於表面分解剪應力的影響較小,然而仍須有適當的斜切角度,不可有過大角度,使得矽基板邊緣出現過大的應力集中現象。

    In the epitaxial process, the silicon substrate rotates at a high speed and hence its edge is in contact with the carrier of epitaxial machine. The contact stress often cause slip lines and crack on the surface of silicon substrate near the edge of contact. Those defects can affect the quality of epitaxy. In this research, we designed four different edge geometries of silicon wafer, and analyzed the stress field of silicon wafers during the rotation process. The analyses were carried out by finite element models of the dynamic contact process between silicon water and carrier. The simulated results were then transformed to the slip coordinate systems of silicon to obtain the resolved shear stress (RSS) field in each slip system. The influence of the edge design on the magnitude and distribution of RSS on the surface of silicon wafers are discussed. The longer cutting length, the lower RSS values are. Also, the cutting length reduces the magnitudes of RSS more effectively than the cutting angle. Besides, two-point contact condition is better than one-point contact condition. At last, the best edge geometry of the wafer is model 3.

    摘要 I 致謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1研究動機與目的 1 1.2本文內容與組織 2 第二章 文獻回顧 3 2.1單晶矽性質之文獻 3 2.2單晶矽分解剪應力分析之文獻 4 第三章 問題敘述與相關性質 11 3.1 問題描述 11 3.2 單晶矽在高溫時之彈性性質 12 3.3單晶矽塑性變形─差排滑移 14 3.4滑移與分解剪應力、溫度之關係 15 第四章 數值模型與結果 20 4.1 有限元素模型 20 4.2 晶邊幾何模型 20 4.3剪應力計算後處理 21 4.4接觸方式 22 4.5模型網格 22 4.6模擬結果與分析 23 4.6.1單點接觸之結果 23 4.6.2雙點接觸之結果 24 第五章 結論 67 參考文獻 69

    [1] ABAQUS 6.13 User’s Manual
    [2] ABAQUS Example Problem Manual
    [3] Burenkov Y. A., Nikanorov S. P., “Temperature dependence of elastic constants of silicon”, Sov. Phys. State 16(5), 963-964, 1974.
    [4] Cochard J., Yonenaga I., M'Hamdi M., Zhang Z.L., “A novel constitutive model for semiconductors: The case of silicon”, J. Mech. Phys. Solids 61, 2402–2432, 2013.
    [5] Garagorri J., Elizalde M. R., Fossati M. C., Jacques D., and Tanner B. K., “Slip band distribution in rapid thermally annealed silicon wafers”, J. Appl. Phys. 111, 094901, 2012.
    [6] George A., Escaravage C., Champier G., Schröter W., “ Velocities of Screw and 60°‐Dislocations in Silicon”, phys. status solidi (b) 53(2) ,483 – 496, 1972.
    [7] George A., “Measurements of the dislocation velocities in silicon”, J. Phys. Colloq. 40, C6/133-C6/137, 1979.
    [8] Hartmaier A., Gumbsch P., “The brittle-to-ductile transition and dislocation activity at crack tips”, J. Comput.-Aided Mater. Des. 6, 145, 1999.
    [9] Hull D., Bacon D.J., “Introduction to dislocation, 4th edition”, Elsevier Ltd, 2001.
    [10] Kelly A., Macmillian N.H., “Strong Solid, 3rd edition”, Oxford University Press, New York, 1986.
    [11] Keating P. N., “Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure”, Phys. Rev. 145,637-645, 1966.
    [12] Mahajan S., Brasen D., Haasen P., “Lüders bands in deformed silicon crystals”, Acta Metall., 27, 1165, 1979.
    [13] Nye J. F., “Physical Properties of Crystals: Their Representation by Tensors and Matrices”, Oxford Univ. Press, 1985.
    [14] Omri M., Tete C., Michel J.P., George A., “On the yield point of floating-zone silicon single crystals: I. Yield stresses and activation parameters”, Philis. Mag. A, 55, 601, 1987.
    [15] Patel J.R., Chaudhuri A.R, “Macroscopic Plastic Properties of Dislocation‐Free Germanium and Other Semiconductor Crystals. I. Yield Behavior”, J. Appl. Phys., 34, 2788, 1963.
    [16] Sumino K., Yonenaga I., “Difference in the Mechanical Strengths of Dislocation-Free Crystals of Czochralski Silicon and Float-Zone Silicon”, Jpn. J. Appl. Phys. Vol 20, No.9, pp. L685-L688, 1981.
    [17] Swarnakar A. K., Biest O. V. der, Vanhellemont J., “Determination of the Si Young’s modulus between room and melt temperature using the impulse excitation technique”, Phys. Status Solidi C 11, No.1, 150-155, 2014.
    [18] Smith W.F., Hashemi J., “Foundations of Materials Science and Engineering”, McGraw-Hill Education, 3rd edition, 2004.
    [19] Sylwestrowicz W. D., “Mechanical properties of single crystals of silicon”, Philos. Mag., 7, 1825, 1962.
    [20] Yonenaga I., “Upper Yield Stress of Si Crystals at High Temperatures”, J. Electrochem. Soc., Vol. 143, No. 8, 1996.

    下載圖示 校內:2022-07-25公開
    校外:2022-07-25公開
    QR CODE