簡易檢索 / 詳目顯示

研究生: 劉昭廷
Liu, Chao-Ting
論文名稱: 以表面增強紅外光譜分析含磺酸根之硫醚分子於金表面的電化學鍍銅效應
The Study of Electrochemical Deposition of Copper on Au Surface at the presence of a sulfonate-Thioether by SEIRAS
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 142
中文關鍵詞: 自組裝單分子膜表面增強紅外光譜電化學鍍銅
外文關鍵詞: Self-assembly monolayer, Surface-Enhanced Infrared Spectroscopy, electrochemical copper deposition
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用表面增強紅外線光譜(Surface-Enhanced Infrared Spectroscopy, SEIRAS)結合循環伏安儀(Cyclic Voltammetry, CV),即時記錄含磺酸根之硫醚分子(3-(dimethylcarbamothioylthio)propane-1-sulfonic acid, DPS)於金表面上隨電位變化之自組裝、分子氧化行為,及其作為電化學鍍銅添加劑時的銅膜成長機制。實驗結果顯示,當電極電位由低至高,DPS的分子吸附位向會由垂直表面趨於平躺。電位高於1.1 V時DPS逐漸氧化,此時DPS的二甲胺基團(-N(CH3)2)會解離,且部分DPS的尾端硫醇基(-SH)氧化為磺酸根(-SO3-)。將電位維持在1.25 V達30分鐘,會有更多的氧化態DPS產生,並藉由磺酸根的親水性游離至電雙層中。此外,DPS分子的氧化伴隨一複合物的生成,推測是由二甲胺基團與硫酸根所組成,此複合物與金載體之間具有較強的吸附能力。
    經由SEIRAS圖譜的分析得知,在電化學鍍銅的過程中,DPS會由金基板轉置至銅膜上,並與硫酸根離子共吸附於銅表面之上。隨著DPS氧化程度的提高,其增進鍍銅的能力也隨之提升。當大量的DPS分子氧化並生成二甲胺基團與硫酸根之複合物時,鍍銅之機制則略有不同,複合物與硫酸根會共吸附於銅膜之上,而氧化態DPS則游離至電雙層中,在複合物、硫酸根與氧化態DPS三者與銅離子間的相互作用之下,可使鍍銅量達到最高值。

    A surface-enhanced infrared spectroscopy (SEIRAS) equipped with cyclic voltammetry (CV) was utilized to study the self-assembly and molecular oxidation behaviors of 3-(dimethylcarbamothioylthio) propane-1-sulfonic acid (DPS) on Au surface, as well as the effects of DPS on the Cu deposition. The experimental results show that DPS molecules adsorb as lift-up orientation at low potentials, but shift to a lying-down conformation at high potentials. At potentials more positive than 1.1 V, DPS will be oxidized and decomposed, leading to the formation of species containing dimethylamino group (-N(CH3)2). Furthermore, the thiol group (-SH) of DPS is oxidized into sulfonate group (-SO3-). By holding the potential at 1.25 V for 30 minutes, a higher amount of oxidized DPS will be formed which tends to diffuse into the electro-double layer, ascribed to the increasing hydrophilicity due to the formation of sulfonate groups. In addition, the SEIRAS spectra indicate that a new compound was formed in associated with the oxidization. This compound is inferred to be a complex composed of dimethylamino group and sulfate ions. The interaction between this complex and the Au substrate is stronger than that between oxidized DPS and Au.
    In the Cu deposition process, the adsorbed DPS will transfer from the Au substrate to the deposited Cu film and co-adsorb with sulfate ions on the surface. The oxidized DPS molecules have an enhance effect to the cupper deposition and this effect is more significant when a larger amount of DPS was oxidized and the dimethylamino-sulfate complex was formed. The SEIRAS spectra reveal that the complex and sulfate co-adsorb on the deposited Cu film, but the oxidized DPS desorbs to the electro-double layer. The synergetic effect of the complex, the oxidized DPS, and sulfate ions, contributes to a higher deposition rate in the Cu deposition.

    摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 自組裝單分子膜 (self-assembled monolayers, SAMs) 4 2.1.1 自組裝單分子膜系統的發展及起源 4 2.1.2 自組裝單分子膜系統的分類 6 2.1.3 有機硫化物於金表面之自組裝行為 9 2.1.3.1 以表面增強紅外光譜(SEIRAS)觀察有機硫化物 9 2.1.3.2 以其他分析儀器觀察有機硫化物 14 2.1.4 自組裝單分子膜的應用 23 2.2 銅製程技術簡介 25 2.2.1 電鍍銅填充盲孔之技術發展 25 2.2.2 電鍍銅添加劑的種類及其作用原理 28 2.2.3低電位沉積(Under Potential Deposition, UPD) 39 2.2.4 電鍍銅之表面增強紅外光譜(SEIRAS)相關研究 43 第三章 實驗部分 49 3.1藥品及耗材 49 3.2儀器設備 51 3.2.1循環伏安儀(Cyclic Voltammogram, CV) 51 3.2.2表面增強紅外光譜(Surface-Enhanced Infrared Absorption Spectroscopy, SEIRAS) 54 3.3實驗步驟 60 3.3.1電極製備 60 3.3.2表面增強紅外光譜儀之操作 62 3.3.3自組裝單分子膜製備與銅沉積之觀察 63 第四章 結果與討論 64 4.1 多晶金於酸性溶液中之分析 64 4.1.1 多晶金於酸性溶液中之循環伏安圖 64 4.1.2 多晶金於酸性溶液中之表面增強紅外光譜 66 4.2 DPS分子於多晶金表面之自組裝行為 69 4.2.1 DPS分子於多晶金表面之循環伏安圖 69 4.2.2 DPS分子於多晶金表面之表面增強紅外光譜 72 4.2.2.1未氧化之DPS自組裝單分子膜 81 4.2.2.2 氧化態之DPS自組裝單分子膜 88 4.2.2.3 大量氧化態之DPS自組裝單分子膜 99 4.3 DPS分子對電化學鍍銅於金載體之效應 107 4.3.1 DPS單分子膜自組裝於銅表面上之探討 107 4.3.2 以循環伏安分析DPS分子於電鍍銅之影響 113 4.3.3 以SEIRAS分析DPS分子對電鍍銅之影響 115 4.3.3.1 未氧化之DPS分子於電鍍銅過程的分析 117 4.3.3.2 氧化態之DPS分子於電鍍銅過程的分析 124 4.3.3.3 大量氧化態之DPS分子於電鍍銅過程的分析 129 第五章 結論 132 第六章 參考資料 134

    1. W. C. Bigelow, D. L. Pickett, W. A. Zisman, "Oleophobic Monolayers : I. Films Adsorbed From Solution in Non-polar Liquids", J. Colloid Sci. 1, 513, 1946.
    2. H. Kuhn, A. Ulman, "Thin Films", Academic Press, New York, 1995.
    3. R. G. Nuzzo, D. L. Allara, "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces", J. Am. Chem. Soc. 105, 4481, 1983.
    4. H. Sellers, A. Ulman, Y. Shnidman, J. E. Eilerss, "Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers", J. Am. Chem. Soc. 115, 9389, 1993.
    5. A. Ulman, "Formation and Structure of Self-Assembled Monolayers", Chem. Rev. 96, 1533, 1996.
    6. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Chem. Rev. 105, 1103, 2005.
    7. G. Yang, G. Liu, "New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy", The Journal of Physical Chemistry B 107, 8746-8759, 2003.
    8. H. A. Biebuyck, G. M. Whitesides, "Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal'", Langmuir 9, 1766, 1993.
    9. H. A. Biebuyck, C. D. Bain, G. M. Whitesides, "Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols", Langmuir 10, 1825, 1994.
    10. M. J. Esplandiu, H. Hagenstro, D. M. Kolb, "Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry", Langmuir 17, 828, 2001.
    11. A. Kudelski, "Structures of Monolayers Formed from Different HS-(CH2)2-X Thiols on Gold, Silver and Copper: Comparitive Studies by Surface-Enhanced Raman Scattering", Journal of Raman Spectroscopy 34, 853, 2003.
    12. L. J. Wan, M. Terashima, H. Noda, M. Osawa, "Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111)", J. Phys. Chem. B 104, 3563, 2000.
    13. 劉詠芳, "有機硫化物及半導體高分子在Au(111)表面自組裝行為及其電性之探討", 國立成功大學 Chapter 4, 2012.
    14. R. Nichols, J. Lipkowski, P. N. Ross, "Adsorption of Molecules at Electrodes", Wiley-VCH, New York , 347, 1992.
    15. J. Zhang, A. Bilic, J. R. Reimers, N. S. Hush, J. Ulstrup, "Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111)", J. Phys. Chem. B. 109, 15335, 2005.
    16. J. Zhang, Q. Chi,J. Ulstrup, "Assembly Dynamics and Detailed Structure of 1-Propanethiol Monolayers on Au(111) Surfaces Observed Real Time by in situ STM", Langmuir 22, 6203, 2006.
    17. E. B. Troughton, C. D. Bain, G. M. Whitesides, "Monolayer Films Prepared by the Spontaneous Self-assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups", Langmuir 4, 365, 1988.
    18. C. J. Sandroff, D. R. Herschbach, "Surface-Enhanced Raman Study of Organic Sulfides Adsorbed on Silver: Facile Cleavage of S-S and C-S Bonds", J.Phys. Chem. 86, 3277, 1982.
    19. S. B. Lee, K. Kim, M. S. Kim, "Electrochemical Reductlon of Organlc Sulfldes Investlgated by Raman Spectroscopy", J. Phys. Chem. 96, 9940, 1992.
    20. C. J. Zhong, M. D. Porter, "Evidence for Carbon-Sulfur Bond Cleavage in Spontaneously Adsorbed Organosulfide-Based Monolayers at Gold", J. Am. Chem. Soc. 116, 11616, 1994.
    21. M. W. J. Beulen, B. H. Huisman, P. A. V. D. Heijden, F. C. J. M. V. Veggel, M. G. Simons , E. M. E. F. Biemond, P. J. D. Lange, D. N. Reinhoudt, "Evidence for Nondestructive Adsorption of Dialkyl Sulfides on Gold", Langmuir 12, 6170, 1996.
    22. C. J. Zhong, R. C. Brush, J. Anderegg, M. D. Porter, "Organosulfur Monolayers at Gold Surfaces: Reexamination of the Case for Sulfide Adsorption and Implications to the Formation of Monolayers from Thiols and Disulfides", Langmuir 15, 518, 1999.
    23. B. Hagenhoff, A. Benninghoven, J. Spinke, M. Liley, W. Knoll, "Time-of-Flight Secondary Ion Mass Spectrometry Investigations of Self-Assembled Monolayers of Organic Thiols, Sulfides, and Disulfides on Gold Surfaces", Langmuir 9, 1622, 1993.
    24. J. Noh, H. S. Kato, M. Kawai, M. Hara, "Surface and Adsorption Structures of Dialkyl Sulfide Self-Assembled Monolayers on Au(111)", J. Phys. Chem. B. 106, 13268, 2002.
    25. 王美齡, "尺寸安定性陽極於填孔電鍍之應用", 國立中興大學, Chapter 4, 2011.
    26. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni, "Damascene Copper Electroplating for Chip Interconnections", IBM J. Res. Develop. 42, 1998.
    27. S. Soukane, S. Sen, T. S. Cale, "Feature Superfilling in Copper Electrochemical Deposition", J. Electrochem. Soc. 149, C74, 2002.
    28. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, D. J. Zurawski, "Chloride Ion Catalysis of the Copper Deposition Reaction", J. Electrochem. Soc. 142, 87, 1995.
    29. Z. V. Feng, X. Li, A. A. Gewirth, "Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study", J. Phys. Chem. B. 107, 9415, 2003.
    30. J. J. Kellya, A. C. West, "Leveling of 200 nm Features by Organic Additives", Electrochem. Solid-State Lett. 2, 561, 1999.
    31. Y. B. Li, W. Wang, Y. L. Li, "Adsorption Behavior and Related Mechanism of Janus Green B during Copper Via-Filling Process", J. Electrochem. Soc. 156, D119, 2009.
    32. N. Zukauskait, A. Malinauskas, "Electrocatalysis by a Brightener in Copper Electrodeposition", J. Soviet Electrochem. 24, 1564, 1989.
    33. J. P. Healy, D. Pletcher, "The chemistry of the additives in an acid copper electroplating bath: Part II. The instability of 4,5-dithiaoctane-l,8-disulphonic acid in the bath on open circuit", J. Electroanal. Chem. 338, 167, 1992.
    34. E. Mattsson, J. O. M. Bockris, "Galvanostatic Studies of the Kinetics of Deposition and Dissolution in the Copper + Copper Sulphate System", Trans. Faraday Soc. 55, 1586, 1959.
    35. W. P. Dow, H. S. Huang, M. Y. Yen, H. H. Chen, "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition", J. Electrochem. Soc. 152, C77, 2005.
    36. W. P. Dow, Y. D. Chiu, M. Y. Yen, "Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide", J. Electrochem. Soc. 156, D155, 2009.
    37. Y. F. Liu, K. Krug, P. C. Lin, Y. D. Chiu, W. P. Dow ,S. L. Yau, Y. L. Lee, "In Situ STM Study of Cu Electrodeposition on TBPS-Modified Au(111) Electrodes", J. Electrochem. Soc. 159, D84, 2012.
    38. T. P. Moffat, D. Wheeler, S. K. Kim, D. Josell, "Curvature Enhanced Adsorbate Coverage Mechanism for Bottom-up Superfilling and Bump Control in Damascene Processing", Electrochimica Acta 53, 145, 2007.
    39. M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, S. Hayashi, "Copper Electroplating Technology for Microvia Filling", Circuit World 29, 9, 2003.
    40. R. Tenno, A. Pohjoranta, "An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives", J. Electrochem. Soc. 155, D383, 2008.
    41. W. P. Dow, M. Y. Yen, S. Z. Liao, Y. D. Chiu, H. C. Huang, "Filling Mechanism in Microvia Metallization by Copper Electroplating", Electrochimica. Acta 53, 8228, 2008.
    42. N. Batina, T. Will, D. M. Kolb, "Study of the Initial Stages of Copper Deposition by in situ Scanning Tunnelling Microscopy", Faraday Discuss. 94, 93, 1992.
    43. D. R. Jung, A. W. Czanderna, "Chemical and Physical Interactions at Metal/Self-Assembled Organic Monolayer Interfaces", Crit. Rev. Solid State Mater. Sci. 19, 1, 1994.
    44. M. Osawa, "Surface-Enhanced Infrared Absorption", Topics Appl. Phys. 81, 163, 2001.
    45. A. Bewick, K. Kunimatsu, B. S. Pons, J. W. Russell, "Electrochemically Modulated Infrared Spectroscopy(EMIRS)", J. Electroanal. Chem. 160, 47, 1984.
    46. S. Pons, T. Davidson, "Vibrational Spectroscopy Of The Electrode-Electrolyte Interface Part IV. Fourier Transform Infrared Spectroscopy: Experimental Considerations", J. Electroanal. Chem. 160, 63, 1984.
    47. T. I. S. Ye, K. Uosaki, "Spectroscopic Studies on Electroless Deposition of Copper on a Hydrogen-Terminated Si(111) Surface in Fluoride Solutions", J. Electrochem. Soc. 148, C421, 2001.
    48. H. Miyake, S. Ye, M. Osawa, "Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry", Electrochem. Commun. 4, 973, 2002.
    49. M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, "Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces", J. Electron. Spectrosc. Relat. Phenom. 64/65, 371, 1993.
    50. M. Osawa, K. Ataka, K. Yoshii, T. Yotsuyanagi, Y.Nishikawa, "Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles", Appl. Spectrosc. 47, 1497, 1993.
    51. J. C. Vickerman, "Surface Analysis-The Principle Techniques", John Wiley & Sons, New York, 278, 1997.
    52. L. A. Nagahara, T. Ohmori, K. Hashimoto, A. Fujishima, "Effects Of Hf Solution In The Electroless Deposition Process On Silicon Surfaces", J. Vac. Sci. Technol. 11, 763, 1993.
    53. H. Angerstein-Kozlowska,B. E. Conway, "Elementary Steps of Electrochemical Oxidation of Single-Crystal Planes of Au - I. Chemical Basis of Processes Involving Geometry of Anions and the Electrode Surfaces", Electrochimica Acta 31, 1051, 1986.
    54. K. Sato, S. Yoshimoto, J. Inukai, K. Itaya, "Effect of Sulfuric Acid Concentration on the Structure of Sulfate Adlayer on Au(111) Electrode", Electrochem. Commun. 8, 725, 2006.
    55. K. Ataka, M. Osawa, "In Situ Infrared Study of Water-Sulfate Coadsorption on Gold(111) in Sulfuric Acid Solutions", Langmuir 14, 951, 1998.
    56. 李雅雯, "含磺酸根硫醚分子在Au(111)電極上的自組裝行為及其對電化學鍍銅的影響 ", 國立成功大學, Chapter 4, 2013.
    57. A. Julianna, N. C. Handy, "Evaluation of the Performance of the HCTH Exchange-correlation Functional Using a Benchmark of Sulfur Compounds", Phys. Chem. Chem. Phys. 1, 5529, 1999.
    58. G. Menconi, D. J. Tozer, "Structures and Harmonic Frequencies of Sulfur-Containing Molecules: Assessment of the 1/4 Exchange-Correlation Function", Phys. Chem. Chem. Phys. 5, 2938, 2003.
    59. J. Zhou, G. Santambrogio, M. Brummer, D. T. Moore, L. Woste, G. Meijer, D. M. Neumark, K. R. Asmis, "Infrared Spectroscopy of Hydrated Sulfate Dianions", J. Chem. Phys. 125, 111102, 2006.
    60. R. Jinnouchi, T. Hatanaka, Y. Morimotoa, M. Osawa, "First Principles Study of Sulfuric Acid Anion Adsorption on a Pt(111) Electrode", Phys. Chem. Chem. Phys. 14, 3208, 2012.
    61. N. Garcia-Araez, P. Rodriguez, V. Navarro, H. J. Bakker, M. T. M. Koper, "Structural Effects on Water Adsorption on Gold Electrodes", The Journal of Physical Chemistry C 115, 21249, 2011.
    62. M. L. Kottke, R. G. Greenler, H. G. Tompkins, "An Infrared Spectroscopic Study of Carbon Monoxide Adsorbed on Polycrystalline Gold Using the Reflection-Absorption Technique ", Surf. Sci. 32, 231, 1972.
    63. B. N. J. Persson, R. Ryberg, "Vibrational Interaction Between Molecules Adsorbed on a Metal Surface: The Dipole-Dipole Interaction", Phys. Rev. B 24, 6954, 1981.
    64. D. Kang, B. Chatterjee, E. Herceg, M. Trenary, "Adsorption and Decomposition of Trimethylamine on Pt(111): Formation of Dimethylaminocarbyne (CN(CH3)2)", Surf. Sci. 540, 23, 2003.
    65. M. Futamata, "Coadsorption of Anions and Water Molecule during Underpotential Deposition of Cu and Pb on the Au(111) Electrode Surface", Chem. Phys. Lett. 333, 337, 2001.
    66. M. J. K. S. K. Cho, H. Koo, O. J. Kwon, J. J. Kim, "Low-Resistivity Cu Film Electrodeposited with 3-N,N-Dimethylaminodithiocarbamoyl-1-Propanesulfonate for the Application to the Interconnection of Electronic Devices", Thin Solid Films 520, 2136, 2012.

    下載圖示 校內:2015-08-09公開
    校外:2015-08-09公開
    QR CODE