| 研究生: |
蘇勤方 Su, Chin-Fang |
|---|---|
| 論文名稱: |
以電化學方法製作具三聚氰胺表面改質的奈米金粒子並應用於表面增強拉曼散射偵測雙酚A A Facile Electrochemical Method to Produce Melamine-Functionalized Gold Nanoparticles for Detection of Bisphenol A Based on Surface Enhanced Raman Scattering |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 電化學 、表面增強拉曼 、雙酚A |
| 外文關鍵詞: | electrochemical, SERS, Bisphenol A |
| 相關次數: | 點閱:100 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境荷爾蒙為干擾人體內分泌系統運作的物質,常用於各種工業產品,其對於環境與健康的潛在危害一直被人們所重視。其中雙酚A是最常見的環境荷爾蒙之一,已被用來製作出許多生活用品。在去年我國發生毒奶瓶事件,許多來自大廠的奶瓶被偵測出超量的雙酚A,自此之後雙酚A之危害再度人們被重視。
本論文以一系列電化學製程製作出金奈米薄膜已達到表面增強拉曼效果,並以三聚氰胺對金奈米薄膜進行表面改質後,能以拉曼增強來偵測水中微量的雙酚A,利用電化學方法和拉曼增強偵測的優點,達到快速且有效的偵測,其檢測限可達10-7-10-8M。
In this work, a facile electrochemical procedure has been proposed for the fabrication of melamine-functionalized gold nanoparticles on ITO electrode as SERS substrates for detection of bisphenol A. First, seed-mediated growth was used to deposit gold nanoparticles. With the growth of the nanoparticles, the gap between the adjacent nanoparticles gradually decreases, and thus plenty of “hot spots” are formed on the substrate for SERS applications. Second, melamine functionalization on SERS substrates was based on diazotization, which is an electro-initiate process.The procedure for melamine-functionalized SERS substrates was cheap, rapid, and eco-friendly with full control by electrochemical procedure. The substrate was used to detect bisphenol A, a typical endocrine disruptor in the environment to show its sensitivity and stability.
1. 羅蔚舟, 確保建康 孕婦及嬰幼兒應減少暴露於壬基酚和雙酚A的影響. 2016: 勁報.
2. Li, Y., et al., Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE. Sensors and Actuators B: Chemical, 2012. 171-172: p. 726-733.
3. 陳慧儀, 利用固相萃取結合液相微流層析電灑晶片質譜儀檢測瓶裝水中之雙酚A. 2011.
4. Swedenborg, E., et al., Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol, 2009. 43(1): p. 1-10.
5. Erbach, G., Health Threats From Endocrine Disruptors: A Scientific And Regulatory Challenge. 2012.
6. Vandenberg, L.N., et al., Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev, 2012. 33(3): p. 378-455.
7. Schug, T.T., et al., Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol, 2011. 127(3-5): p. 204-15.
8. Casals-Casas, C. and B. Desvergne, Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol, 2011. 73: p. 135-62.
9. 楊憲宏, 【「世紀之毒」大追蹤】戴奧辛斷送大地生機. 原載於民國72年8月16日聯合報3版: 環境資訊中心 Taiwan Environmental Information Center.
10. 奶瓶有毒!台灣優生、培寶4奶瓶驗出雙酚A. 2015: 蘋果日報.
11. Ragavan, K.V., N.K. Rastogi, and M.S. Thakur, Sensors and biosensors for analysis of bisphenol-A. TrAC Trends in Analytical Chemistry, 2013. 52: p. 248-260.
12. 林靜芳, 雙酚A, 林嬪嬪 and 何佳琪, Editors.: 國家環境毒物研究中心.
13. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver. Chemical Physics Letters, 1974. 26(2): p. 163-166.
14. Li, D.-W., et al., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta, 2013. 181(1-2): p. 23-43.
15. Zheng, J. and L. He, Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Comprehensive Reviews in Food Science and Food Safety, 2014. 13(3): p. 317-328.
16. Luo, S.C., et al., Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron, 2014. 61: p. 232-40.
17. Harper, M.M., K.S. McKeating, and K. Faulds, Recent developments and future directions in SERS for bioanalysis. Phys Chem Chem Phys, 2013. 15(15): p. 5312-28.
18. McNay, G., et al., Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectrosc, 2011. 65(8): p. 825-37.
19. Hong, S. and X. Li, Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. Journal of Nanomaterials, 2013. 2013: p. 1-9.
20. Yue, W., et al., Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. Journal of Micromechanics and Microengineering, 2012. 22(12): p. 125007.
21. Jensen, T.R., et al., Nanosphere Lithography Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. The Journal of Physical Chemistry B, 2000. 104: p. 10549-10556.
22. Mahajan, S., et al., Reproducible SERRS from structured gold surfaces. Phys Chem Chem Phys, 2007. 9(45): p. 6016-20.
23. Luo, Z., et al., An application of AAO template: orderly assembled organic molecules for surface-enhanced Raman scattering. J. Mater. Chem., 2008. 18(1): p. 133-138.
24. Ye, W., et al., Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application. Electrochimica Acta, 2010. 55(6): p. 2004-2009.
25. Yang, Y.-C., et al., Electrochemical Growth of Gold Nanostructures for Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C, 2011. 115(5): p. 1932-1939.
26. Praig, V.G., et al., Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films. Electrochimica Acta, 2008. 53(27): p. 7838-7844.
27. Keresztury, G., Raman spectroscopy:theory. Vol. 1. 2001, hand book of vibrational spectroscopy.: John Wiley&Sons.
28. Griffiths, P.R., Raman spectroscopy:theory. Vol. 1. 2001, hand book of vibrational spectroscopy.: John Wiley&Sons.
29. 汪建民, 中國材料科學學會, 1998: p. 73-82.
30. Kazuto Tamura, T.N., Yukihiko Takamatsu, and J. Mastuso, TDLS200 Tunable Diode Laser Gas Analyzer and its application to Industrial Process. 2010: Yokogawa Technical Report English Edition.
31. Ewen Smith, G.D., Modern Raman spectroscopy:A Practical Approach. 2005: John wiley&Sons,Ltd.
32. Byrne, H., G. Sockalingum, and N. Stone, Raman Microscopy:Complement or Competitor? RSC Analytical Spectroscopy Monographs No. 11, 2011.
33. Ferraro, J.R., K. Nakamoto, and C.W. Brown, Introductory Raman Spectroscopy. 2003.
34. Hahn, D.W., Raman Scattering Theory. 2007.
35. 江海邦, 研究銀奈米結構於表面增強拉曼散射生物感測之應用, in 光電科學研究所. 2012, 國立臺灣海洋大學.
36. 黃永慶, 利用表面增強拉曼散射偵測細菌表層結構的變化, in 生醫光電研究所. 2007, 國立陽明大學.
37. Nieman, S.a.H., principles of instrumental analysis. Raman spectroscopy. 1998, Harcourt Brace&Company.
38. Guillot, N. and M.L. de la Chapelle, The electromagnetic effect in surface enhanced Raman scattering: Enhancement optimization using precisely controlled nanostructures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012. 113(18): p. 2321-2333.
39. Schlucker, S., Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl, 2014. 53(19): p. 4756-95.
40. Lin, H.-Y., et al., Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Optics Express, 2009: p. 165-172.
41. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97.
42. Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 2005. 36(6-7): p. 485-496.
43. Zeng, Z., Y. Liu, and J. Wei, Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications. TrAC Trends in Analytical Chemistry, 2016. 75: p. 162-173.
44. Fang, P.-P., et al., Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness. Journal of Raman Spectroscopy, 2008. 39(11): p. 1679-1687.
45. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev, 2008. 37(5): p. 1061-73.
46. Xue, J.Q., et al., Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Anal Chim Acta, 2013. 777: p. 57-62.
47. Elobeid, M.A., et al., Bisphenol A Detection in Various Brands of Drinking Bottled Water in Riyadh, Saudi Arabia Using Gas Chromatography/Mass Spectrometer. Tropical Journal of Pharmaceutical Research, 2012. 11(3).
48. Sun, Y., et al., Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed Chromatogr, 2004. 18(8): p. 501-7.
49. Murray, K.E., S.M. Thomas, and A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut, 2010. 158(12): p. 3462-71.
50. Han, X.X., et al., Coupling reaction-based ultrasensitive detection of phenolic estrogens using surface-enhanced resonance Raman scattering. Anal Chem, 2011. 83(22): p. 8582-8.
51. Fang, C., et al., Beta-cyclodextrin decorated nanostructured SERS substrates facilitate selective detection of endocrine disruptor chemicals. Biosens Bioelectron, 2013. 42: p. 632-9.
52. Yuan, J., et al., Synthesis of a beta-cyclodextrin-modified Ag film by the galvanic displacement on copper foil for SERS detection of PCBs. J Colloid Interface Sci, 2012. 365(1): p. 122-6.
53. Lai, Y., et al., Combination of solid phase extraction and surface-enhanced Raman spectroscopy for rapid analysis. Analyst, 2013. 138(9): p. 2598-603.
54. Xie, Y., et al., Selective SERS detection of each polycyclic aromatic hydrocarbon (PAH) in a mixture of five kinds of PAHs. Journal of Raman Spectroscopy, 2011. 42(5): p. 945-950.
55. Jiang, X., et al., Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. ACS Appl Mater Interfaces, 2013. 5(15): p. 6902-8.
56. Marks, H.L., et al., Rational design of a bisphenol A aptamer selective surface-enhanced Raman scattering nanoprobe. Anal Chem, 2014. 86(23): p. 11614-9.
57. Belanger, D. and J. Pinson, Electrografting: a powerful method for surface modification. Chem Soc Rev, 2011. 40(7): p. 3995-4048.
58. Trazzi, C. and S. Lerner, 電子接枝(Electrografting)製程實現高深寬比矽穿孔. 2011
59. Truzzi, C., A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers, in Manufacturing and Reliability Challenges for 3D ICs using TSVs. 2011: San Diego,CA.
60. Lyskawa, J.l. and D. Be´langer, Direct Modification of a Gold Electrode with Aminophenyl Groups by Electrochemical Reduction of in Situ Generated Aminophenyl Monodiazonium Cations. Chemical of Materials, 2006. 18(20): p. 4755-4763.
61. F, A., H. K.M, and O. H, The heterogenation of melamine and its catalytic activity. Applied Catalysis A:General, 2010. 382(1): p. 115-121.
62. Grondein, A. and D. Bélanger, Covalent grafting of aminated compounds on Vulcan XC72R by melamine in situ diazotization. Carbon, 2012. 50(12): p. 4335-4342.
63. Kesavan, S., M.A. Raj, and S.A. John, Formation of electrochemically reduced graphene oxide on melamine electrografted layers and its application toward the determination of methylxanthines. Anal Biochem, 2016. 496: p. 14-24.
64. Wang, J., et al., Electrochemical Seed-Mediated Growth of Surface-Enhanced Raman Scattering Active Au(111)-Like Nanoparticles on Indium Tin Oxide Electrodes. The Journal of Physical Chemistry C, 2013. 117(30): p. 15817-15828.
65. 胡啟章, 電化學原理與方法. 五南圖書出版公司.
66. Kim, A., et al., Melamine Sensing in Milk Products by Using Surface Enhanced Raman Scattering. Analytical Chemistry, 2012. 84(21): p. 9303-9309.
67. Shen, R., et al., Electrochemical detection of bisphenol A at graphene/melamine nanoparticle-modified glassy carbon electrode. Journal of Applied Electrochemistry, 2015. 45(4): p. 343-352.
68. Prabhaharan, M., et al., Molecular structure and vibrational spectroscopic investigation of melamine using DFT theory calculations. Spectrochim Acta A Mol Biomol Spectrosc, 2014. 123: p. 392-401.
69. Tirgir, F., M.R. Sabzalian, and G. Moghadam, Fabrication and DFT structure calculations of novel biodegredable diphenolic monomer containing D-4-hydroxyphenylglycine moiety as biologically active substituent: compression with toxic industrial bisphenol-A. Designed Monomers and Polymers, 2015. 18(5): p. 401-412.