簡易檢索 / 詳目顯示

研究生: 林明蓉
Lin, Ming-Jung
論文名稱: 探討酪胺酸激酶抑制劑對表現突變KIT蛋白之胃腸道基質瘤的效果與機制
Explore the Growth Inhibitory Effect and Mechanisms of Novel Tyrosine kinase Inhibitors on Mutant KIT-expressing Gastrointestinal Stromal Tumor
指導教授: 陳立宗
Chen, Li-Tzong
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 49
中文關鍵詞: 胃腸道基質瘤癌KIT基利克膜衣錠抗藥性酪胺酸激酶抑制劑Aurora kinase A抑制劑G2/M細胞週期停滯
外文關鍵詞: gastrointestinal stromal tumors, KIT, imatinib-resistance, tyrosine kinase inhibitor, Aurora kinase A inhibitor, G2/M arrest
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胃腸道基質瘤癌(GIST)被認為起源於胃腸道肌肉層內的卡哈細胞發生癌症轉化,70~80%病人帶有KIT基因增加功能性的突變,此突變使酪胺酸激酶KIT不需與其配體Stem cell factor結合而持續性活化。KIT基因最常發生突變在其基因外顯子11(≈70%)接著是外顯子9(≈10-15%)再來是外顯子13, 14, 17(≈5%)。臨床上使用多型酪胺酸激酶抑制劑(TKIs) imatinib mesylate (IM)、sunitinib malate (SU) 、sorafenib 衍生化合物regorafenib分別為現有第一、二、三線藥物用來治療無法切除或發生轉移的胃腸道基質瘤癌。然而這些藥物有一些限制像是藥物治療一段時間GIST病人疾病會惡化,多數此疾病惡化與KIT基因產生第二個突變有關,且配合藥物治療後疾病無進展發生率的中位數值也不理想,因此,持續發展新穎藥物來治療對現有藥物IM無效及更進化的GIST是很重要的。 本研究利用國家衛生研究院生藥所合成的新穎酪胺酸激酶抑制劑1J373S1對KIT突變GIST細胞生長的抑制作用和其分子機制。1J373S1可抑制表現KIT突變的3株GIST細胞株生長且可以有效抑制其KIT磷酸化,包含: 對IM有效KIT外顯子13突變的GIST882細胞,對IM無效SU有效KIT外顯子11/13雙突變的GIST430,對IM/SU皆無效KIT外顯子11/17雙突變的GIST48。1J373S1不僅可抑制KIT突變的3株GIST細胞株KIT磷酸化且其抑制酪胺酸激酶磷酸化作用也在轉染一系列KIT 突變constructs (包含臨床上常見的KIT第一和第二突變位點)到COS1細胞此in vitro系統證實1J373S1有效抑制KIT不同突變點的KIT磷酸化。有趣的是,現有有效的TKIs通常都使其敏感的GIST細胞株細胞週期停在G0,然而,1J373S1處理的GIST48, GIST430細胞週期停在G2/M。且我們實驗發現1J373S1處理後的GIST48其p53, p21, p16, E2F表現量上升,並觀察到β-galactosidase此老化特徵。未來我們將持續研究1J373S1造成GIST48,GIST430細胞週期停在G2/M的分子機制和探討老化對1J373S1處理後GIST48細胞抑制生長的角色。

    Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumors of the gastrointestinal tract. GISTs frequently exhibit gain-of-function KIT mutations (70-80% of GISTs), which leads to constitutive activation of the KIT tyrosine kinase receptor in the absence of its binding ligand, stem cell factor (SCF). The most common KIT mutations are located at exon 11 (≈80%) followed by exon 9 (≈10-15%) and exons 13, 14 or 17 (≈5%). Clinically, imatinib mesylate (IM), sunitinib malate (SU), regorafenib, a sorafenib-derived compound, are multi-tyrosine kinase inhibitors (TKIs), are the current standard treatments for patients with unresectable and/or metastatic GIST. However, those drugs have limitations: experience disease progression, associated with the acquisition of secondary mutations, and unsatisfactory median progression-free survival. Therefore, it is important to explore much suitable compound for advanced gastrointestinal stromal tumor. In this study, we aim to evaluate the growth inhibitory effects and molecular mechanisms of a novel TKI from the Institute of Biotechnology and Pharmacology, National Health Research Institutes, the 1J373S1 that was initially designed as a FLT-3 inhibitor, on IM and/or SU resistance GIST cells. The 1J373S1 shows activity on inhibiting the KIT phosphorylation and proliferation of KIT mutated GIST cells, including IM-sensitive exon13 mutated GIST882, IM-resistant/sunitinib-sensitive exon 11/13 doubly mutated GIST430, IM/SU-resistant/nilotinib-sensitive exon 11/17 doubly mutated GIST48. The superiority of 1J373S1 on inhibiting the activation of KIT mutant proteins was confirmed in an in vitro cell-based platform consisting of a series of COS-1 cells expressing various KIT cDNA constructs encoding common primary ± secondary mutations observed in clinical GISTs. Interestingly, TKI treatment usually resulted in G0 arrest in sensitive cell lines (SU for GIST 430 and nilotinib for GIST48), however, 1J373S1 treatment resulted in G2/M-arrest in both GIST48 and GIST430 cells and also induces GIST cell lines apoptosis. In addition, we have explored that 1J373S1 treatment can induce senescent signals: p53, p21, p16, E2F, β-galactosidase signal up-regulation of exon 11/17 doubly mutated GIST48. In future work, we shall explore the molecular mechanisms of growth inhibition GIST cells further more.

    中文摘要 I Abstract III 誌謝 V Contents VII Figure of contents X Appendixes XI Abbreviation XII Introduction 1 Gastrointestinal stromal tumor 1 KIT 2 GIST Therapy 3 Surgery 3 Targeted therapy 4 First line treatment: Imatinib 4 Second line treatment: Sunitinb, Nilotinib 5 Third line treatment: Regorafenib 6 FMS-like receptor tyrosine kinase-3 (FLT3) 6 Aurora A 7 Novel dual FLT3–Aurora A Inhibitors: 1J373S1 8 Aim of this study 9 Material and Method 10 Cell lines and reagents 10 Transient transfection 11 Protein preparation and Western blot study 12 Growth inhibition assay 12 Cell cycle analysis 13 Apoptosis analysis 14 β-galactosidase staining 14 Result 15 1J373S1 exerted activity to inhibit the proliferation of GIST cell lines with KIT mutations. 15 1J373S1 showed inhibitory effect on KIT phosphorylation and induced PARP cleavage of KIT mutated GIST cells. 16 1J373S1 induced apoptosis of KIT mutated GIST cells. 16 1J373S1 induced upregulation of proapoptotic proteins of KIT mutated GIST cells, GIST430 and GIST48 17 GIST430 and GIST48 undergo obvious G2 phase accumulation 17 1J373S1 showed prolonged inhibitory effect on KIT phosphorylation to GIST cell lines 18 1J373S1 induced senescence and inhibit phosphorylated Aurora A in GIST48 and induced autophagy in GIST430 18 1J373S1 inhibited KIT phosphorylation successfully in commonly primary and secondary KIT mutations of GIST. 19 Discussion 21 The effect of 1J373S1 to GIST882 21 The effect of 1J373S1 to GIST430 21 The effect of 1J373S1 to GIST48 23 In vitro cell based platform to evaluate the response of 1J373S1 to KIT mutations 24 Conclusion 27 Reference 43 1J373S1 exerted activity to inhibit the proliferation of GIST cell lines with KIT mutations 29 1J373S1 showed inhibitory effect on KIT phosphorylation and induced PARP cleavage of KIT mutated GIST cells 30 1J373S1 induced apoptosis of KIT mutation GIST cells 32 1J373S1 showed induction of proapoptotic proteins of KIT mutation GIST cells: GIST430 and GIST48 34 GIST430 and GIST48 undergo obviously G2 phase accumulation 35 1J373S1 showed prolonged inhibitory effect on KIT phosphorylation to GIST cell lines 36 1J373S1 induced senescence, reduced Aurora A activity in GIST48 and induced autophagy in GIST430 38 1J373S1 inhibited KIT phosphorylation successfully in commonly primary and secondary KIT mutations of GIST 41

    Campisi, J., & d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 8(9), 729-740.
    Cauchi, C., Somaiah, N., Engstrom, P. F., Litwin, S., Lopez, M., Lee, J., et al. (2012). Evaluation of nilotinib in advanced GIST previously treated with imatinib and sunitinib. Cancer Chemother Pharmacol, 69(4), 977-982.
    Chang Hsu, Y., Ke, Y. Y., Shiao, H. Y., Lee, C. C., Lin, W. H., Chen, C. H., et al. (2014). Facile Identification of Dual FLT3-Aurora A Inhibitors: A Computer-Guided Drug Design Approach. ChemMedChem, 9(5), 953-961.
    Corless, C. L., Barnett, C. M., & Heinrich, M. C. (2011). Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer, 11(12), 865-878.
    Demetri, G. D., van Oosterom, A. T., Garrett, C. R., Blackstein, M. E., Shah, M. H., Verweij, J., et al. (2006). Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet, 368(9544), 1329-1338.
    Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res, 5(1), 1-10.
    Gorgun, G., Calabrese, E., Hideshima, T., Ecsedy, J., Perrone, G., Mani, M., et al. (2010). A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood, 115(25), 5202-5213.
    Gounder, M. M., & Maki, R. G. (2011). Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Cancer Chemother Pharmacol, 67 Suppl 1, S25-43.
    Heinrich, M. C., Maki, R. G., Corless, C. L., Antonescu, C. R., Harlow, A., Griffith, D., et al. (2008). Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol, 26(33), 5352-5359.
    Hsueh, Y. S., Lin, C. L., Chiang, N. J., Yen, C. C., Li, C. F., Shan, Y. S., et al. (2013). Selecting tyrosine kinase inhibitors for gastrointestinal stromal tumor with secondary KIT activation-loop domain mutations. PLoS One, 8(6), e65762.
    Judson, I., & Demetri, G. (2007). Advances in the treatment of gastrointestinal stromal tumours. Ann Oncol, 18 Suppl 10, x20-24.
    Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ, 18(4), 571-580.
    Khoo, K. H., Verma, C. S., & Lane, D. P. (2014). Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov, 13(3), 217-236.
    Lorincz, A., Redelman, D., Horvath, V. J., Bardsley, M. R., Chen, H., & Ordog, T. (2008). Progenitors of interstitial cells of cajal in the postnatal murine stomach. Gastroenterology, 134(4), 1083-1093.
    Nishida, T., Doi, T., & Naito, Y. (2014). Tyrosine kinase inhibitors in treatment of unresectable or metastatic gastrointestinal stromal tumors. Expert Opin Pharmacother, 1-11.
    Perciavalle, R. M., Stewart, D. P., Koss, B., Lynch, J., Milasta, S., Bathina, M., et al. (2012). Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol, 14(6), 575-583.
    Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Res, 63(11), 2705-2715.
    Rubin, B. P., Heinrich, M. C., & Corless, C. L. (2007). Gastrointestinal stromal tumour. Lancet, 369(9574), 1731-1741.
    Takaki, M. (2003). Gut pacemaker cells: the interstitial cells of Cajal (ICC). J Smooth Muscle Res, 39(5), 137-161.
    Teicher, B. A. (2008). Newer cytotoxic agents: attacking cancer broadly. Clin Cancer Res, 14(6), 1610-1617.
    Tsujimoto, Y., & Shimizu, S. (2005). Another way to die: autophagic programmed cell death. Cell Death Differ, 12 Suppl 2, 1528-1534.
    Yeh, C. N., Hwang, T. L., Huang, C. S., Lee, P. H., Wu, C. W., Chen-Guo, K., et al. (2012). Clinical practice guidelines for patients with gastrointestinal stromal tumor in Taiwan. World J Surg Oncol, 10, 246.
    Yen, C. C., Yeh, C. N., Cheng, C. T., Jung, S. M., Huang, S. C., Chang, T. W., et al. (2012). Integrating bioinformatics and clinicopathological research of gastrointestinal stromal tumors: identification of aurora kinase A as a poor risk marker. Ann Surg Oncol, 19(11), 3491-3499.

    無法下載圖示 校內:2019-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE