| 研究生: |
鄭宇明 Cheng, Yuming |
|---|---|
| 論文名稱: |
微波電漿化學氣相沉積法合成鑽石薄膜與氮化鋁薄膜應用於微機電共振器 Microwave Plasma Chemical Vapor Deposition of Diamond/AlN Films for MEMS Resonators |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 微機電系統 、氮化鋁 、鑽石薄膜 、懸臂樑 、微波電漿化學氣相沉積 |
| 外文關鍵詞: | MEMS, AlN, diamond film, cantilever beams, MPCVD |
| 相關次數: | 點閱:114 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用氮化鋁(AlN)結合微波電漿化學沉積法成長的鑽石薄膜做出微機電共振器的懸臂樑結構,懸臂樑為鉬-氮化鋁-鉬-鑽石薄膜結構,並利用化學惰性很高的鑽石薄膜特性,使得可以在定義完鑽石薄膜圖形之後,就讓懸臂樑懸浮,這種自動對準的設計簡化了很多黃光或蝕刻步驟,藉此減少時間以及對元件的汙染。
利用X光繞射分析儀(XRD)、掃描式電子顯微鏡(SEM)和壓電力顯微鏡(PFM)檢驗與分析經由射頻濺鍍系統沉積的氮化鋁薄膜,經過這些儀器進行的材料分析可以得知薄膜的方向性、壓電係數、厚度與側面結構圖。論文中透過一系列的實驗得到在低壓、適當的濺鍍瓦數與溫度下最佳化的(002)方向性氮化鋁。此外,也對於有助於沉積氮化鋁薄膜的鉬金屬下電極優化過。
在鑽石薄膜與鉬金屬下電極上沉積的氮化鋁薄膜得到4.25pm/V 的壓電係數。另外,也由實驗結果可以證實與楊式係數高的鑽石薄膜結合應用的氮化鋁懸臂樑元件的共振頻率獲得提升,而在本研究中最高的共振頻率為80um 長的225k Hz。
In this thesis, the MEMS resonators of aluminum nitride (AlN) piezoelectric cantilever beams have been successfully demonstrated and fabricated with diamond films which are deposited by microwave plasma chemical vapor deposition system (MPCVD). With the chemical inertness of the diamond film helps the release process for the fabrication of the Mo/AlN/Mo/diamond cantilever beam structures. A self-aligned process has been designed to avoid the lithographic misalignment and possible damages to the AlN film by the inductively coupled plasma process.
AlN thin films are deposited by RF magnetron sputtering system and characterized by means of X-Ray Diffractomer (XRD), Scanning Electron Microscope (SEM) and Piezoresponse Force Microscope (PFM) for investigating the orientation, cross-sectional structure, thickness, and the piezoelectric coefficient. Results show that at the sputtering pressure of 1.7X10-3 Torr, and optimized sputtering power, deposition temperature and N2/Ar flow ratio (002) AlN can be deposited. In addition, the molybdenum film which is characteristic of small lattice mismatch with AlN and small coefficient of thermal expansion is also optimized to grow AlN.
The piezoelectric coefficient of AlN on Mo coated diamond is 4.25pm/V. The high Young’s Modulus of diamond film improves the resonant frequency of AlN cantilever beams. The highest resonant frequency of 225k Hz is measured for the cantilever beam of 80um long and 40um wide.
[1] 行政院國家科學委員會,微機電系統技術與應用,精密儀器發展中心出版, 2003.
[2] Eric Mounier and Laurent Robin. Status of the MEMS Industry 2013.
[3] David Saada, Diamond and graphite properties, 2000.
[4] http://en.wikipedia.org/wiki/Diamond_type.
[5] Bovenkerk, H. P., Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf, R. H. Jr., Nature 184:1094, 1959.
[6] http://www.e6cvd.com/cvd/page.jsp?pageid=341.
[7] http://www.sv.vt.edu/classes/ESM4714/Student_Proj/class94/adamzeakes/lattice.html.
[8] Nemanich, R. J., Shroder, R. E., Glass, J. T. and Lucovsky, G., Proc. of the 19th Int. Cord. on the Physics of Semiconductors, (W. Zawadzki, ed.) p 515, Inst. Of Physics, Polish Acad. of Science, Warsaw, 1966.
[9] J. Hirmke, et al. “Diamond single crystal growth in hot filament CVD,” Diamond and Related Materials, 15, 536–541, 2006.
[10] S. T. Lee, et al., "CVD diamond films: nucleation and growth," Materials Science & Engineering R-Reports, vol. 25, pp. 123-154, Jul 30 1999.
[11] J. C. Angus, "Diamond and Diamond-Like Films," Thin Solid Films, vol. 216, pp. 126-133, Aug 28 1992.
[12] M. N. Yoder, Synthetic Diamond: Emerging CVD Science and Technology: John Wiley & Son, 1993.
[13] Chris J.H. Wort, Richard S. Batmer, materialstoday, JAN-FEB, 2008.
[14] 宋健民, 工業材料, 1995.
[15] Koji Kobashi, “Diamond Films Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth,” Elsevier Ltd, ISBN: 978-0-08-044723-0, 2005.
[16] Y. Gurbuz, et al. “Diamond semiconductor technology for RF device applications,” Solid-State Electronics, 49, 1055-1070, 2005.
[17] H. Liu, et al. “Studies on nucleation process in diamond CVD: an overview of recent developments,” Diamond and Related Materials, 4, 1173-1188, 1995.
[18] Li, D., et al. "Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD." Solid State Ionics 179(21): 1263-1267, 2008.
[19] Das, D. and R. Singh "A review of nucleation, growth and low temperature synthesis of diamond thin films." International materials reviews 52(1): 29-64, 2007.
[20] Gruen, D. M. "Nanocrystalline Diamond Films ." Annual Review of Materials Science 29(1): 211-259, 1999.
[21] Sun, Z., et al. "UV Raman characteristics of nanocrystalline diamond films with different grain size." Diamond and related materials 9(12): 1979-1983, 2000.
[22] Sumant, A., et al. "Large-area low-temperature ultrananocrystalline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMS/NEMS-CMOS systems". SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 2009.
[23] Manbachi, A. and R. S. Cobbold "Development and application of piezoelectric materials for ultrasound generation and detection." Ultrasound 19(4): 187-196, 2011.
[24] 吳朗,電子陶瓷/壓電,全欣資訊, 1994.
[25] 邱碧秀,電子陶瓷材料,徐氏基金會, 1988.
[26] http://en.wikipedia.org/wiki/Polyvinylidene_fluoride#Properties.
[27] Kusterer, J., et al. "Piezo-actuated nanodiamond cantilever technology for high-speed applications." Diamond and related materials 17(7): 1429-1433, 2008.
[28] Lueng, C., et al. "Piezoelectric coefficient of aluminum nitride and gallium nitride." Journal of applied physics 88(9): 5360-5363, 2000.
[29] Shin, H. and J.-T. Song. "Piezoelectric Coefficient Measurement of AIN Thin Films at the Nanometer Scale by Using Piezoresponse Force Microscopy." Journal of the Korean Physical Society 56(2): 580-585, 2010.
[30] Dubois, M.-A.and P. Muralt. "Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering." Journal of applied physics89(11): 6389-6395, 2001.
[31] Mussler, B. H., S. Venigalla, W. C. Johnson and S. Rudolph "Advanced materials and powders." American Ceramic Society Bulletin 79(6): 45-56, 2000.
[32] http://en.wikipedia.org/wiki/Aluminum_nitride.
[33] Chiu, K.-H., et al. "Deposition and characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic wave resonator." Thin Solid Films 515(11): 4819-4825, 2007.
[34] Taniyasu, Y. and M. Kasu "MOVPE growth of single-crystal hexagonal AlN on cubic diamond." Journal of Crystal Growth 311(10): 2825-2830, 2009.
[35] Yoshida, S., et al. "Reactive molecular beam epitaxy of aluminum nitride." Journal of Vacuum Science and Technology 16(4): 990-993, 1979.
[36] Cheng, C. C., et al. "Low‐temperature growth of aluminum nitride thin films on silicon by reactive radio frequency magnetron sputtering*." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 14(4): 2238-2242, 1996.
[37] Rodriguez-Navarro, A., et al. "Development of preferred orientation in polycrystalline AlN thin films deposited by rf sputtering system at low temperature." Journal of materials research 12(7): 1850-1855, 1997.
[38] Dubois, M.-A. and P. Muralt. "Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering." Journal of applied physics 89(11): 6389-6395, 2001.
[39] Cheng, H., et al. "AlN films deposited under various nitrogen concentrations by RF reactive sputtering." Journal of Crystal Growth 254(1): 46-54, 2003.
[40] Ho, C.-J., et al. "Preferred orientation control and characterization of AlN thin films using reactive sputtering." Tamkang Journal of science and engineering 7(1): 1-4, 2004.
[41] Medjani, F., et al. "Effect of substrate temperature and bias voltage on the crystallite orientation in RF magnetron sputtered AlN thin films." Thin Solid Films 515(1): 260-265, 2006.
[42] Zhong, H., et al. "Residual stress of AlN films RF sputter deposited on Si (111) substrate." Journal of Materials Science: Materials in Electronics 23(12): 2216-2220, 2012.
[43] 歐天凡,沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響,國立中山大學電機工學系碩士論文, 2004.
[44] Kamohara, T., et al. "Influence of molybdenum bottom electrodes on crystal growth of aluminum nitride thin films." Journal of Crystal Growth 310(2): 345-350, 2008.
[45] Lee, J.-B., et al. "Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs." Thin Solid Films 447: 610-614, 2004.
[46] Jakkaraju, R., et al. "Integrated approach to electrode and AlN depositions for bulk acoustic wave (BAW) devices." Microelectronic Engineering 70(2): 566-570, 2003.
[47] Choi, W.-C., et al. "Multifunctional Ru-AlN heating resistor films for high efficiency inkjet printhead." Journal of electroceramics: 1-6, 2013.
[48] Sharma, G., et al. "Fabrication and characterization of a shear mode AlN solidly mounted resonator-silicone microfluidic system for in-liquid sensor applications." Sensors and Actuators A: Physical 159(1): 111-116, 2010.
[49] Williams, M. D., et al. "An AlN MEMS piezoelectric microphone for aeroacoustic applications." Microelectromechanical Systems, Journal of 21(2): 270-283, 2012.
[50] Fang, W. and J. Wickert. "Determining mean and gradient residual stresses in thin films using micromachined cantilevers." Journal of Micromechanics and Microengineering 6(3): 301, 1996.
[51] Di Pietrantonio, F., et al. "Guided lamb wave electroacoustic devices on micromachined AlN/Al plates." Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 57(5): 1175-1182, 2010.
[52] Lu, J., et al. "High quality factor silicon cantilever driven by piezoelectric thin film actuator for resonant based mass detection." Microsystem technologies 15(8): 1163-1169, 2009.
[53] Leland, E. S., et al. "A MEMS AC current sensor for residential and commercial electricity end-use monitoring." Journal of Micromechanics and Microengineering 19(9): 094018, 2009.
[54] Elfrink, R., et al. "Vibration energy harvesting with aluminum nitride-based piezoelectric devices." Journal of Micromechanics and Microengineering 19(9): 094005, 2009.
[55] Massaro, A., et al. "Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency." Applied physics letters 98(5): 053502-053502-053503, 2011.
[56] Sokmen, U., et al. "Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications." Journal of Micromechanics and Microengineering 20(6), 2010.
[57] Tomimatsu, Y., et al. AlN cantilever for differential pressure sensor. Applications of Ferroelectric and Workshop on the Piezoresponse Force Microscopy (ISAF/PFM), 2013 IEEE International Symposium on the, IEEE, 2013.
[58] http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/137/180049156.pdf
[59] T. Vandevelde, T.D. Wu, C Quaeyhaegens, J Vlekken, M D'Olieslaeger and L Stals, "Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition," Thin Solid Films, vol. 340, pp. 159-163, 1999.
[60] http://en.wikipedia.org/wiki/Raman_spectroscopy
[61] http://en.wikipedia.org/wiki/Scanning_electron_microscope
[62] http://www.delminsociety.net/articles/Colors_of_Fluorite.shtml
[63] 曾賢德,掃描探針顯微鏡的原理與應用, 2004.
[64] N.I.o.S.A.Technology.http://www.eeel.nist.gov/812/test-structures/10-FilesToDownload/UsersGuide.SRM.r1.pdf
[65] Y. Tzeng and Y.K. Liu, “Diamond CVD by microwave plasmas in argon-diluted methane without or with 2% hydrogen additive,” Diamond and Related Materials 14, 3-7, 261-265, 2005.
[66] Sah, R., et al. "Crystallographic Texture of Submicron Thin Aluminum Nitride Films on Molybdenum Electrode for Suspended Micro and Nanosystems." ECS Journal of Solid State Science and Technology 2(4): P180-P184, 2013.
[67] Lee, J.-B., et al. "Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs." Thin Solid Films 447: 610-614, 2004.
[68] Akiyama, M., et al. "Preparation of highly oriented aluminum nitride thin films on molybdenum bottom electrodes using metal interlayers." Journal of materials science 40(5): 1159-1162, 2005.
[69] Canavese, G., et al. "Polymeric mask protection for alternative KOH silicon wet etching." Journal of Micromechanics and Microengineering 17(7): 1387, 2007.
[70] Yun, D.-J. and S.-W. Rhee. "Effect of molybdenum electrode annealing on the interface properties between metal and pentacene." Organic Electronics 9(5): 551-55, 2008,
[71] Medjani, F., et al. "Effect of substrate temperature and bias voltage on the crystallite orientation in RF magnetron sputtered AlN thin films." Thin Solid Films 515(1): 260-265, 2006.
[72] Wang, Q.-M., et al. "Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields." Journal of applied physics 86(6): 3352-3360, 1999.
校內:2024-07-01公開