簡易檢索 / 詳目顯示

研究生: 陳亭云
Chen, Ting-Yun
論文名稱: 鬆弛素家族肽受體1基因在特發性肺纖維化中的調控
Characterization of Relaxin Family Peptide Receptor 1 Gene Regulation in Idiopathic Pulmonary Fibrosis
指導教授: 洪菁霞
Hung, Ching-Hsia
共同指導教授: 張英澤
Zhang, Yingze
學位類別: 博士
Doctor
系所名稱: 醫學院 - 健康照護科學研究所
Institute of Allied Health Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 43
中文關鍵詞: 肺纖維化特發性肺纖維化(IPF)鬆弛素鬆弛素-胰島素樣家族肽受體1(RXFP1)成纖維細胞
外文關鍵詞: Lung fibrosis, Idiopathic pulmonary fibrosis (IPF), Relaxin, Relaxin-insulin like family peptide receptor 1 (RXFP1), Fibroblast
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 特發性肺纖維化(Idiopathic pulmonary fibrosis, IPF)是一種慢性肺疾病,其特徵在於成纖維細胞增殖和細胞外基質的堆積。目前尚無藥物可以治癒特發性肺纖維化,只有極少數藥物可以有效地減慢輕度至中度患者肺功能下降的病程。唯一能真正治愈特發性肺纖維化的方法是雙肺移植,但在實行上有許多困難與限制。因此發展抗纖維化治療的方向會是組織纖維化治療方式的一道曙光。
    在實驗動物模型中,肽激素鬆弛素(relaxin)已被確定具有抗纖維化作用。它可以通過降低膠原蛋白束的密度和鬆弛膠原蛋白纖維來重塑韌帶。有研究曾將嘗試應用鬆弛素在治療硬皮病患者,卻未觀察到有益作用。2016年,匹茲堡大學Daniel J. Kass and張英澤教授的團隊提出了進一步的研究進展:與對照組肺相比,特發性肺纖維化肺組織中的鬆弛素-胰島素樣家族肽受體1(relaxin-insulin like family peptide receptor 1, RXFP1)顯著減少。他們還檢測到肺成纖維細胞中鬆弛素-胰島素樣家族肽受體1的信使核糖核酸(messenger RNA, mRNA)亦有減少的現象。這樣的現象解釋了硬皮病患者使用鬆弛素治療失敗的原因,可能是受鬆弛素-胰島素樣家族肽受體1的不正常向下調控所導致。因此,即使濃度增加,鬆弛素也不能通過其受體活化其抗纖維化作用。
    在本研究中,我們推定鬆弛素-胰島素樣家族肽受體1中啟動子和增強子區域調控區的基因組結構,確定了兩個不同長度的主要鬆弛素-胰島素樣家族肽受體1轉錄版本。使用初級肺成纖維細胞在pGL3報告載體系統中測試了這些區域。當將其克隆到pGL3啟動子載體系統中時,我們觀察到了遠端啟動子區域的顯著增強子活性。在從供體肺分離的肺成纖維細胞中,並觀察到增強子的活性在特發性肺纖維化肺成纖維細胞中顯著下降。因此,我們假設異常的轉錄調控可能導致特發性肺纖維化中的鬆弛素-胰島素樣家族肽受體表達下降。本研究鑑定了RXFP1基因調控相關的分子機制和表徵。這項研究的結果可以用作將來開發特發性肺纖維化新療法的策略的相關依據。

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease, characterized by fibroblast proliferation and extracellular matrix accumulation. Few drugs could effectively slow down the disease progression of IPF patients. The only way to cure IPF is a double lung transplant. No treatment is effective for stopping progression of the disease. The idea of anti-fibrotic recombinant treatments may offer hopes for tissue fibrosis patients.
    Peptide hormone, relaxin, has been identified to have anti-fibrotic effects in animal model experiments. It can remodel ligaments by reducing the collagen bundle’s density and relaxing collagen fibers. The therapeutic effect of relaxin was studied in scleroderma patients; no beneficial effects were observed, however. In 2016, Professor Daniel Kass and Professor Yingze Zhang’s team at the University of Pittsburgh reported that RXFP1 (relaxin-insulin like family peptide receptor 1) was significantly decreased in IPF lung tissues. They also detected reduced RXFP1 mRNA and protein in lung fibroblasts. This finding may explain the failure of relaxin treatment in scleroderma patients. The down-regulation of RXFP1 receptor makes the therapeutic relaxin not be able to mediate anti-fibrotic effects.
    In this study, two putative promoter and enhancer regions of the RXFP1 gene were characterized. The regions were tested in pGL3 reporter vector systems using primary lung fibroblasts. A dramatic enhancer activity observed is in the distal regulatory region. This enhancer activity is much more profound in lung fibroblasts isolated from control donor lungs than IPF. Fine mapping of cis-acting enhancer elements and transcription factors are analyzed and confirmed. Thus, aberrant transcriptional regulation could lead to RXFP1 down-regulation in IPF.
    This study results in the identification and characterization of the molecular mechanisms associated with RXFP1 gene regulation. The results are useful for further studies towards developing relaxin-based anti-fibrotic therapy.

    中文摘要 I Abstract II Acknowledgment III 1. Introduction 1 1.1. Background 1 1.1.1. Relaxin 1 1.1.2. Relaxin family peptide receptor 1 (RXFP1) 1 1.1.3. H2 relaxin binding signaling pathway 3 1.1.4. Role of relaxin and RXFP1 in disease progression 4 1.1.5. Idiopathic pulmonary fibrosis 6 1.2. Hypothesis & aim 7 2. Methodology 8 2.1. Cell culture 8 2.2. Primer design, cloning and site directed mutagenesis 8 2.3. Transfection, dual-luciferase assay 8 2.4. Nuclear protein extraction 9 2.5. Electrophoretic mobility shift assays (EMSA) and supershift assays 9 2.6. Chromatin immunoprecipitation (ChIP) assays 10 2.7. Statistical analysis 10 3. Results 11 3.1. Identification of RXFP1 genomic structure 11 3.2. Determination of core promoter activities 11 3.3. Prediction of promoter locus and activities analyzation 11 3.4. Evaluation of enhancer activity in putative promoter regions 12 3.5. Detection of an AP-1 binding site in the major enhancer sequence 13 3.6. Comparison of AP-1 binding between donor and IPF 14 4. Discussion 15 4.1. RXFP1 alternative splicing variants 15 4.2. DNA methylation and promoter activity 15 4.3. AP-1 regulation of RXFP1 (enhancer) 16 4.4. Conclusions 17 5. References 18 6. Appendix 24 6.1. Figures 24 Figure 1. The RXFP1 gene location and predicted promoter locus (Modified from UCSC genomic browser). 24 Figure 2. The promoter and enhancer activities in putative regions. 25 Figure 3. Serial deletion to locate the putative enhancer region. 26 Figure 4. The mutation of putative enhancer AP-1 site and activities. 28 Figure 5. Electrophoretic mobility shift assay (EMSA) in donor fibroblasts. 29 Figure 6. Chromatin immunoprecipitation (ChIP) assay on the second AP-1 binding site of RXFP1 enhancer. 31 6.2. Tables 33 Table 1. The primer list 33 Table 2. Promoter element predictions in DP and PP. 36 Table 3. The testing plasmids information based on UCSC genomic browser Dec.2013 (GRCh38/hg38). 37 6.3. Abbreviation 39 6.4. Materials and reagents 41 6.5. Online tools and datasets 43

    1. Bathgate, R.A., et al., International Union of Pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev, 2006. 58(1): p. 7-31.
    2. Sethi, A., et al., The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1. Nat Commun, 2016. 7.
    3. Wilkinson, T.N., et al., Evolution of the relaxin-like peptide family, in BMC Evol Biol. 2005. p. 14.
    4. Hisaw, F.L., Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med, 1926. 23: p. 661-663.
    5. Chihal, H.J. and L.L. Espey, Utilization of the releaxed symphysis pubis of guinea pigs for clues to the mechanism of ovulation. Endocrinology, 1973. 93(6): p. 1441-5.
    6. Fevold, H.L., F.L. Hisaw, and R.K. Meyer, THE RELAXATIVE HORMONE OF THE CORPUS LUTEUM. ITS PURIFICATION AND CONCENTRATION1. Journal of the American Chemical Society, 1930. 52(8): p. 3340-3348.
    7. Samuel, C.S., Relaxin: Antifibrotic Properties and Effects in Models of Disease, in Clin Med Res. 2005. p. 241-9.
    8. Burger, L.L. and O.D. Sherwood, Relaxin Increases the Accumulation of New Epithelial and Stromal Cells in the Rat Cervix during the Second Half of Pregnancy. Endocrinology, 1988. 139(9): p. 3984-3995.
    9. Hwang, J.J., D. Macinga, and E.A. Rorke, Relaxin modulates human cervical stromal cell activity. J Clin Endocrinol Metab, 1996. 81(9): p. 3379-84.
    10. Huang, C.J., Y. Li, and L.L. Anderson, Relaxin and estrogen synergistically accelerate growth and development in the uterine cervix of prepubertal pigs. Anim Reprod Sci, 1997. 46(1-2): p. 149-58.
    11. Min, G., et al., Evidence that endogenous relaxin promotes growth of the vagina and uterus during pregnancy in gilts. Endocrinology, 1997. 138(2): p. 560-5.
    12. Downing, S.J., J.M. Bradshaw, and D.G. Porter, Relaxin improves the coordination of rat myometrial activity in vivo. Biol Reprod, 1980. 23(5): p. 899-903.
    13. Goldsmith, L.T., et al., Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4685-9.
    14. Lessing, J.B., et al., Effect of relaxin on human spermatozoa. J Reprod Med, 1986. 31(5): p. 304-9.
    15. Khanna, D., et al., Recombinant human relaxin in the treatment of systemic sclerosis with diffuse cutaneous involvement: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum, 2009. 60(4): p. 1102-11.
    16. Hsu, S.Y., et al., Activation of orphan receptors by the hormone relaxin. Science, 2002. 295(5555): p. 671-4.
    17. Shpakov, A.O., et al., Studies of the molecular mechanisms of action of relaxin on the adenylyl cyclase signaling system using synthetic peptides derived from the LGR7 relaxin receptor. Neurosci Behav Physiol, 2007. 37(7): p. 705-14.
    18. Petrie, E.J., et al., In a Class of Their Own – RXFP1 and RXFP2 are Unique Members of the LGR Family. Front Endocrinol (Lausanne), 2015. 6.
    19. Kumagai, J., et al., INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem, 2002. 277(35): p. 31283-6.
    20. Scott, D.J., et al., Characterization of the rat INSL3 receptor. Ann N Y Acad Sci, 2005. 1041: p. 13-6.
    21. Hoare, B.L., et al., Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience, 2019. 11: p. 93-113.
    22. Halls, M.L., et al., International Union of Basic and Clinical Pharmacology. XCV. Recent Advances in the Understanding of the Pharmacology and Biological Roles of Relaxin Family Peptide Receptors 1–4, the Receptors for Relaxin Family Peptides, in Pharmacol Rev. 2015. p. 389-440.
    23. Stelzer, G., et al., The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr Protoc Bioinformatics, 2016. 54: p. 1.30.1-1.30.33.
    24. Fishilevich, S., et al., GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford), 2017. 2017.
    25. RXFP1 relaxin family peptide receptor 1 [Homo sapiens (human)] - Gene - NCBI. 2019; Available from: https://www.ncbi.nlm.nih.gov/pubmed/.
    26. Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014. 13(2): p. 397-406.
    27. Tan, J., et al., Expression of RXFP1 Is Decreased in Idiopathic Pulmonary Fibrosis. Implications for Relaxin-based Therapies. Am J Respir Crit Care Med, 2016. 194(11): p. 1392-402.
    28. Bahudhanapati, H., et al., MicroRNA-144-3p targets relaxin/insulin-like family peptide receptor 1 (RXFP1) expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Biol Chem, 2019. 294(13): p. 5008-5022.
    29. Bahudhanapati, H., et al., RXFP1 expression is regulated by miR-144-3p in Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis. 2017.
    30. Kleinlogel, S., Optogenetic user's guide to Opto-GPCRs. Front Biosci (Landmark Ed), 2016. 21: p. 794-805.
    31. Banerjee, A.A. and S.D. Mahale, Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function. Front Endocrinol (Lausanne), 2015. 6: p. 110.
    32. Venkatakrishnan, A.J., et al., Molecular signatures of G-protein-coupled receptors. Nature, 2013. 494(7436): p. 185-94.
    33. Wheatley, M., et al., Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol, 2012. 165(6): p. 1688-703.
    34. Palczewski, K., et al., Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 2000. 289(5480): p. 739-45.
    35. Diepenhorst, N.A., et al., Investigation of interactions at the extracellular loops of the relaxin family peptide receptor 1 (RXFP1). J Biol Chem, 2014. 289(50): p. 34938-52.
    36. Hopkins, E.J., R.A. Bathgate, and P.R. Gooley, The human LGR7 low-density lipoprotein class A module requires calcium for structure. Ann N Y Acad Sci, 2005. 1041: p. 27-34.
    37. Varret, M., et al., Software and database for the analysis of mutations in the human LDL receptor gene. Nucleic Acids Res, 1997. 25(1): p. 172-80.
    38. Koduri, V. and S.C. Blacklow, Folding determinants of LDL receptor type A modules. Biochemistry, 2001. 40(43): p. 12801-7.
    39. Scott, D.J., et al., Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J Biol Chem, 2006. 281(46): p. 34942-54.
    40. Bruell, S., et al., Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules. Front Endocrinol (Lausanne), 2013. 4: p. 171.
    41. Bullesbach, E.E. and C. Schwabe, The trap-like relaxin-binding site of the leucine-rich G-protein-coupled receptor 7. J Biol Chem, 2005. 280(14): p. 14051-6.
    42. Scott, D.J., G.W. Tregear, and R.A. Bathgate, Modeling the primary hormone-binding site of RXFP1 and RXFP2. Ann N Y Acad Sci, 2009. 1160: p. 74-7.
    43. Hopkins, E.J., et al., The NMR solution structure of the relaxin (RXFP1) receptor lipoprotein receptor class A module and identification of key residues in the N-terminal region of the module that mediate receptor activation. J Biol Chem, 2007. 282(6): p. 4172-84.
    44. Halls, M.L., et al., Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther, 2005. 313(2): p. 677-87.
    45. Scheerer, P., et al., Crystal structure of opsin in its G-protein-interacting conformation. Nature, 2008. 455(7212): p. 497-502.
    46. Svendsen, A.M., et al., Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Mol Cell Endocrinol, 2008. 296(1-2): p. 10-7.
    47. Halls, M.L., R.A.D. Bathgate, and R.J. Summers, Comparison of Signaling Pathways Activated by the Relaxin Family Peptide Receptors, RXFP1 and RXFP2, Using Reporter Genes. Journal of Pharmacology and Experimental Therapeutics, 2007. 320(1): p. 281-290.
    48. Tamargo, J., et al., New investigational drugs for the management of acute heart failure syndromes. Curr Med Chem, 2010. 17(4): p. 363-90.
    49. Halls, M.L., et al., Relaxin Family Peptide Receptor (RXFP1) Coupling to Gαi3 Involves the C-Terminal Arg752 and Localization within Membrane Raft Microdomains. Molecular Pharmacology, 2009. 75(2): p. 415-428.
    50. Chow, B.S., et al., Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One, 2012. 7(8): p. e42714.
    51. Heeg, M.H., et al., The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int, 2005. 68(1): p. 96-109.
    52. Halls, M.L., Constitutive formation of an RXFP1-signalosome: a novel paradigm in GPCR function and regulation. Br J Pharmacol, 2012. 165(6): p. 1644-1658.
    53. Schiller, M., et al., Increased cAMP levels modulate transforming growth factor-beta/Smad-induced expression of extracellular matrix components and other key fibroblast effector functions. J Biol Chem, 2010. 285(1): p. 409-21.
    54. Kaftanovskaya, E.M., et al., Human Relaxin Receptor Is Fully Functional in Humanized Mice and Is Activated by Small Molecule Agonist ML290, in J Endocr Soc. 2017. p. 712-25.
    55. Krajnc-Franken, M.A.M., et al., Impaired Nipple Development and Parturition in LGR7 Knockout Mice, in Mol Cell Biol. 2004. p. 687-96.
    56. Samuel, C.S., et al., The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann N Y Acad Sci, 2005. 1041: p. 173-81.
    57. Morelli, S.S., et al., Relaxin in endometriosis. Ann N Y Acad Sci, 2009. 1160: p. 138-9.
    58. Binder, C., et al., Relaxin enhances in-vitro invasiveness of breast cancer cell lines by up-regulation of matrix metalloproteases. Mol Hum Reprod, 2002. 8(9): p. 789-96.
    59. Hombach-Klonisch, S., et al., Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol, 2006. 169(2): p. 617-32.
    60. Feng, S., et al., Relaxin promotes prostate cancer progression. Clin Cancer Res, 2007. 13(6): p. 1695-702.
    61. Thanasupawat, T., et al., RXFP1 is Targeted by Complement C1q Tumor Necrosis Factor-Related Factor 8 in Brain Cancer. Front Endocrinol (Lausanne), 2015. 6.
    62. Tashima, L.S., G. Mazoujian, and G.D. Bryant-Greenwood, Human relaxins in normal, benign and neoplastic breast tissue. J Mol Endocrinol, 1994. 12(3): p. 351-64.
    63. Hombach-Klonisch, S., et al., Relaxin-like factor (RLF) is differentially expressed in the normal and neoplastic human mammary gland. Cancer, 2000. 89(11): p. 2161-8.
    64. Radestock, Y., C. Hoang-Vu, and S. Hombach-Klonisch, Relaxin reduces xenograft tumour growth of human MDA-MB-231 breast cancer cells. Breast Cancer Res, 2008. 10(4): p. R71.
    65. Bialek, J., et al., Relaxin enhances the collagenolytic activity and in vitro invasiveness by upregulating matrix metalloproteinases in human thyroid carcinoma cells. Mol Cancer Res, 2011. 9(6): p. 673-87.
    66. Feng, S., et al., Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr Relat Cancer, 2010. 17(4): p. 1021-33.
    67. Feng, S. and A.I. Agoulnik, Expression of LDL-A module of relaxin receptor in prostate cancer cells inhibits tumorigenesis. Int J Oncol, 2011. 39(6): p. 1559-65.
    68. Kamat, A.A., et al., The role of relaxin in endometrial cancer. Cancer Biol Ther, 2006. 5(1): p. 71-7.
    69. Bennett, R.G., Relaxin and its role in the development and treatment of fibrosis. Translational Research, 2009. 154(1): p. 1-6.
    70. Unemori, E.N., et al., Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest, 1996. 98(12): p. 2739-45.
    71. Bennett, R.G., et al., Relaxin Decreases the Severity of Established Hepatic Fibrosis in Mice. Liver Int, 2014. 34(3): p. 416-26.
    72. Samuel, C.S., et al., Relaxin deficiency in mice is associated with an age-related progression of pulmonary fibrosis. Faseb j, 2003. 17(1): p. 121-3.
    73. McDonald, G.A., et al., Relaxin increases ubiquitin-dependent degradation of fibronectin in vitro and ameliorates renal fibrosis in vivo. Am J Physiol Renal Physiol, 2003. 285(1): p. F59-67.
    74. Hewitson, T.D., et al., Endogenous relaxin is a naturally occurring modulator of experimental renal tubulointerstitial fibrosis. Endocrinology, 2007. 148(2): p. 660-9.
    75. Zhang, J., et al., Effect of relaxin on myocardial ischemia injury induced by isoproterenol. Peptides, 2005. 26(9): p. 1632-9.
    76. Bathgate, R.A., et al., Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Mol Cell Endocrinol, 2008. 280(1-2): p. 30-8.
    77. Seibold, J.R., et al., Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann Intern Med, 2000. 132(11): p. 871-9.
    78. Mookerjee, I., et al., Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway, and Smad2. Faseb j, 2009. 23(4): p. 1219-29.
    79. Chow, B.S., et al., Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int, 2014. 86(1): p. 75-85.
    80. Hossain, M.A., et al., A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1. Chem Sci, 2016. 7(6): p. 3805-3819.
    81. Chen, T.Y., et al., The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med, 2020: p. e1194.
    82. McBride, A., et al., In search of a small molecule agonist of the relaxin receptor RXFP1 for the treatment of liver fibrosis. Sci Rep, 2017. 7(1): p. 10806.
    83. Giordano, N., et al., Expression of RXFP1 in skin of scleroderma patients and control subjects. Scand J Rheumatol, 2012. 41(5): p. 391-5.
    84. King, T.E., A. Pardo, and M. Selman, Idiopathic pulmonary fibrosis. The Lancet, 2011. 378(9807): p. 1949-1961.
    85. Mortimer, K.M., et al., Characterizing Health Outcomes in Idiopathic Pulmonary Fibrosis using US Health Claims Data. Respiration, 2020: p. 1-11.
    86. Samuel, C.S., et al., Anti-fibrotic actions of relaxin. Br J Pharmacol, 2017. 174(10): p. 962-976.
    87. McVicker, B.L. and R.G. Bennett, Novel Anti-fibrotic Therapies. Front Pharmacol, 2017. 8: p. 318.
    88. Lam, M., et al., Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther, 2018. 187: p. 61-70.
    89. Pini, A., et al., Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. J Pharmacol Exp Ther, 2010. 335(3): p. 589-99.
    90. Kamat, A.A., et al., Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology, 2004. 145(10): p. 4712-20.
    91. Reese, M.G., Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem, 2001. 26(1): p. 51-6.
    92. Consortium, E.P., An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489(7414): p. 57-74.
    93. Kern, A., et al., Cloning, Expression, and Functional Characterization of Relaxin Receptor (Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 7) Splice Variants from Human Fetal Membranes, in Endocrinology. 2008. p. 1277-94.
    94. Kern, A. and G.D. Bryant-Greenwood, Mechanisms of relaxin receptor (LGR7/RXFP1) expression and function. Ann N Y Acad Sci, 2009. 1160: p. 60-6.
    95. Hsu, S.Y., et al., The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol, 2000. 14(8): p. 1257-71.
    96. Messeguer, X., et al., PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics, 2002. 18(2): p. 333-4.
    97. Farré, D., et al., Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res, 2003. 31(13): p. 3651-3.
    98. Vierbuchen, T., et al., AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection. Mol Cell, 2017. 68(6): p. 1067-1082.e12.
    99. Halls, M.L., et al., Relaxin Family Peptide Receptors – former orphans reunite with their parent ligands to activate multiple signalling pathways, in Br J Pharmacol. 2007. p. 677-91.
    100. Hsu, S.Y., et al., Relaxin signaling in reproductive tissues. Mol Cell Endocrinol, 2003. 202(1-2): p. 165-70.
    101. Bechtel, W., et al., Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med, 2010. 16(5): p. 544-50.
    102. Takai, D. and P.A. Jones, Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A, 2002. 99(6): p. 3740-5.
    103. Liang, G., et al., Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A, 2004. 101(19): p. 7357-62.
    104. Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): p. 553-60.
    105. Cedar, H. and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet, 2009. 10(5): p. 295-304.
    106. Karin, M., Z. Liu, and E. Zandi, AP-1 function and regulation. Curr Opin Cell Biol, 1997. 9(2): p. 240-6.
    107. Rajasekaran, S., M. Vaz, and S.P. Reddy, Fra-1/AP-1 Transcription Factor Negatively Regulates Pulmonary Fibrosis In Vivo, in PLoS One. 2012.
    108. Schulien, I., et al., The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating Osteopontin expression. Cell Death Differ, 2019. 26(9): p. 1688-1699.
    109. Wernig, G., et al., Unifying mechanism for different fibrotic diseases, in Proc Natl Acad Sci U S A. 2017. p. 4757-62.

    無法下載圖示 校內:2026-07-14公開
    校外:2026-07-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE