簡易檢索 / 詳目顯示

研究生: 邱淑惠
Chiu, Shu-Hui
論文名稱: 用於高解析度之局部紋理強化之三邊濾波器設計
Super Resolution Using Trilateral Filter Regression with Local Texture Enhancement
指導教授: 楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: 超解析度影像內插新邊緣定向內插影像高頻增強
外文關鍵詞: Super resolution, image interpolation, new edge-directed interpolation, high frequency enhancement
相關次數: 點閱:80下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個用於高解析度的局部紋理強化之三邊濾波器。此系統主要包括利用三邊濾波器回歸進行內插與局部紋理強化兩部分。三邊濾波器主要是用來改善傳統NEDI方法的缺點。在內插部分,利用三邊濾器給予在訓練區塊裡的每個像素適當的權重。因此,便會減少某些區域的區塊效應。並在內插後於部分紋理區域加上高頻率的資訊,達到改善紋理模糊的問題。
    實驗結果的部分,從客觀的評價來看,本論文所提出的三邊濾波器比數種目前知名的方法有更高的PSNR與SSIM的表現。除此之外,局部紋理強化也在主觀的觀察者給予的評分裡獲得較高的視覺表現。

    In this thesis, a super resolution using trilateral filter regression with local texture enhancement is proposed. The system consists of two major parts, the interpolation of trilateral filter regression, and local texture enhancement. The trilateral filter is used to fix the disadvantage of the traditional NEDI methods. In the interpolation part, the suitable weights are given for all pixels in the training window by the trilateral filter. Hence, the blocking effect can be reduced in some regions. After interpolations part, the high frequency information of the local texture is added into the enlarged images to improve the texture blurring.
    Experimental results demonstrate that the proposed method provides superior performance than other well-known approaches in the average PSNR and SSIM. In addition, the texture enhancement achieves better subjective performance by evaluation of observers.

    摘 要 I Abstract II 誌 謝 III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivations 4 1.3 Organization 4 Chapter 2 Fundamentals 6 2.1 Image Interpolation 6 2.2 Traditional Image Interpolation 7 2.2.1 Nearest Neighbor Interpolation 7 2.2.2 Bilinear Interpolation 8 2.2.2 Bi-cubic Interpolation 10 2.3 Linear Regression for Image Interpolation 12 Chapter 3 The Proposed System 16 3.1 System Overview 16 3.2 Trilateral Filter 17 3.3 High Frequency Extraction 20 3.4 High Frequency Patch Selection 21 3.5 Texture Enhancement 24 3.6 Error Compensation 24 Chapter 4 Experimental Results 26 4.1 Simulation Environment Settings 26 4.2 Parameters Settings 30 4.2.1 The Correlation Parameters Selection 30 4.2.2 The Constants Selection 34 4.3 Results of Trilateral Filter 36 4.4 Results of Texture Enhancement 45 Chapter 5 Conclusions 48 Chapter 6 Future Work 49 References 50

    [1] H. Huang and H. He, “Super-Resolution Method for Face Recognition Using Nonlinear Mappings on Coherent Features,” IEEE Trans. on Neural Networks, vol. 22, no. 1, pp. 121-130, 2011.
    [2] J. Dai and J. Zhou, “Multifeature-Based High-Resolution Plamprint Recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 33, no. 5, pp. 945-957, 2011.
    [3] N. Okabayashi, H. Takahashi, T. Aida, H. Hama, “High-Resolution Image Restoration from Low-Resolution Images – Preprocessing for Pattern Recognition,” International Conf. on Innovative Computing, Information and Control, pp. 312-315, 2007.
    [4] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super resolution,” IEEE Comput. Graph. Appl., vol. 22, no. 2, pp. 56–65, 2002.
    [5] R. Tsai, T.S. Huang, “Multi-frame image restoration and registration,” in: Advances in Computer Vision and Image Processing, vol. 1, no. 2, pp. 317–339,1984.
    [6] H. Zhang, Y. Zhang, H. Li, and T. S. Huang, “Generative Bayesian Image Super Resolution With Natural Image Prior,” IEEE Trans. Image Process., vol. 21, pp. 4054-4067, 2012.
    [7] A.Temizel and T. Vlachos, “Wavelet Domain Image Resolution Enhancement Using Cycle-spinning”, Electron. Lett., vol. 41, pp. 119-239, 1991.
    [8] M. Irani and S. Peleg, “Improving Resolution by Image Registration,” CVGIP Graph. Models. Image Process., vol. 53, pp.231-239, 1991.
    [9] W. Dong, L. Zhang, G. Shi, and X. Wu, “Nonlocal Back-projection for Adaptive Image Enlargement,” IEEE Image Process. (ICIP) Conf., pp. 349-352, 2009.
    [10] D. Zhou, X. Shen, and W. Dong, “Image Zooming Using Directional Cubic Convolution interpolation,” IET Image Process., vol. 6, pp. 627-634, 2012.
    [11] Y. Luo, S. Liu, and H. Zhu, “Edge-directed Interpolation Based on Canny Detector,” IEEE Mechatronics and Automation Conf., pp. 698-702, 2011.
    [12] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Reading, MA: Addison-Wesley, 1992.
    [13] E. Angel and A. Jain, “A Nearest Neighbors Approach to Multidmnsional Filtering,” IEEE Decision and Control Conf., pp. 84-88, 1972.
    [14] R. G. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans. on Signal Process., vol. 29, pp. 1153-1160, 1981.
    [15] H. C. Andrews, C. L. Patterson, “Digital Interpolation of Discrete Images,” IEEE Trans. on Computers, vol. 25, no. 2, pp. 192-202, 1976.
    [16] H. S. Hou and H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. on Signal Process., vol. 6, no. 6, pp. 508–517, 1978.
    [17] K. Jensen and D. Anastassiou, “Subpixel Edge Localization and the Interpolation of Still Images,” IEEE Trans. on Image Process., vol. 4, no. 3, pp. 285-295, 1995.
    [18] X. Li and M. T. Orchard, “New Edge-Directed Interpolation,” IEEE Trans. on Image Processing., vol. 10, no. 10, pp. 1521-1527, 2001.
    [19] Y. Yun, J. Bae, and J. Kim, “Adaptive Multidirectional Edge Directed Interpolation for Selected Edge Regions,” IEEE TENCON Conf., pp. 385-388, 2011.
    [20] N. Asuni and A. Giachetti, “Accuracy Improvements and Artifacts Removal in Edge Based Image Interpolation,” VISAPP Computer Vision Theory and Applications Conf., vol. 1, no. 8, pp. 58-65, 2008.
    [21] W. S. Tam, C. W. Kok, and W. C. Siu, “Modified Edge-Directed Interpolation for Images,” Journal of Electronic Imaging, vol. 19, no. 1, 2010.
    [22] C. S. Wong and W. C. Siu, “Further Improved Edge-Directed Interpolation and Fast EDI for SDTV to HDTV Conversion,” European Signal Process. Conf., pp. 309-313, 2010.
    [23] Z. Wang, A. C. Bovik, “Image Quality Assessment: From Error Visibility to Structural Similarity,”IEEE Trans. on Image Process., vol. 13, no. 4, pp. 600-612, 2004

    下載圖示 校內:立即公開
    校外:2019-09-01公開
    QR CODE