簡易檢索 / 詳目顯示

研究生: 陳冠瑋
Chen, Kuan-Wei
論文名稱: 以共沉析法製備之MnxZnyFe3-x-yO4奈米粒子之合成及磁性性質探討
Synthesis and Magnetic Properties of MnxZnyFe3-x-yO4 Nanoparticles Prepared using a Co-precipitation Method
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 103
中文關鍵詞: 氧化鐵奈米顆粒磁性質
外文關鍵詞: Iron oxide, nanoparticles, magnetic properties
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,氧化鐵奈米顆粒作為軟磁性材料被應用在相當多的領域當中,如生醫領域、電子工業及半導體工業中。因其在奈米尺度下具有高磁飽和、高磁導率以及相當低的矯頑力,呈現超順磁性之特性。然而受限於氧化鐵之化學組成及晶體結構,其磁性質的加強,諸如提高磁飽和、進一步降低矯頑力,都受到一定的限制。雖然在Vestal等人的研究中,有利用表面修飾強化磁性質的方法。但使用二元元素置換氧化鐵顆粒中的鐵元素以及討論反應時的酸鹼環境對磁性質之影響,卻相對稀少。因此本研究主要目的為使用共沉析法製備及分析Fe3O4, MnxFe3-xO4, ZnyFe3-yO4奈米顆粒之基本性質,與不同比例之MnxZnyFe3-x-yO4奈米顆粒的晶體結構、化學組成及磁性質等的探討。
    本論文實驗結果與討論將分成三大部分,第一部分為製備Fe3O4奈米顆粒,前驅物為溶解氯化鐵及氯化亞鐵之水溶液進行共沉析合成法,透過改變前驅物二價及三價鐵離子之比例及反應環境酸鹼值控制顆粒尺寸、晶體結構及組成比例,並測試其磁性質。第二部分為單一元素置換之MnxFe3-xO4及ZnyFe3-yO4奈米顆粒,控制前驅物中錳或鋅的比例,合成出不同置換程度之氧化鐵奈米顆粒。第三部分為同時添加錳及鋅置換之MnxZnyFe3-x-yO4之合成與分析,透過不同比例之錳、鋅離子置換奈米顆粒中的二、三價鐵離子,合成出具較佳磁性質之MnxZnyFe3-x-yO4奈米顆粒。錳離子對鐵的置換降低了晶體結構中的(311)及(440)的平面距離,並使晶粒尺寸增加,使四面體格隙與八面體格隙以及八面體格隙與八面體格隙之間之超互換交互作用加強,進而提升整體的磁矩飽和。此外,透過以鋅離子取代部份八面體格隙中的鐵,造成八面體格隙間的磁偶極矩交互作之不對稱性增加,以降低反向偶極矩的作用,達成提昇磁飽和極降低矯頑力之目的。本實驗使用超導量子干涉儀分析其磁性質,電子能譜儀分析化學組成、鍵結結構,X射線繞射儀、場發掃描式電子顯微鏡與穿透式電子顯微鏡分析其晶體結構、表面形貌。

    (Mn, Zn) ions were doped into Fe3O4 nanoparticles to enhance the magnetic property of MnxZnyFe3-x-yO4 nanoparticles, by adding the (Mn, Zn) ion into the precursor solution. Nanoparticles are synthesized through an easy, one-step and quick aqueous co-precipitation method. Iron(III) chloride [FeCl3⋅6H2O], manganese(II) chloride [MnCl2·4H2O], and zinc chloride [ZnCl2] were dissolved into hydrochloric acid to form the precursor solution with surfactant adding. NH4OH was then added into the precursor solution as reagent and control to a certain pH value. After vigorous agitation, precipitates were collected. To investigate the microstructure, chemical composition and magnetic properties, the obtained powders were characterized using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, Electron Spectroscopy for Chemical Analysisand and superconducting quantum interference measurement device. The effects and mechanism of Mn and Zn ion additions on the chemical composition and magnetic properties are presented and discussed.

    摘要 I Extended Abstract III 誌謝 XXXVI 總目錄 XXXVII 表目錄 XL 圖目錄 XLI 第1章 緒論 1 1.1 前言 1 1.2 簡介 2 第2章 理論背景與文獻回顧 4 2.1 氧化鐵奈米粒子 4 2.2 共沉析合成法 7 2.3 電磁屏蔽效應 9 2.4 軟磁性材料 11 2.5 單一元素添加對氧化鐵奈米粒子之影響 15 2.5.1 Co添加之影響 15 2.5.2 Mn添加之影響 16 2.5.3 Zn添加之影響 17 2.6 二元元素添加對氧化鐵奈米粒子之影響 19 2.6.1 Cu與Mn添加之影響 19 2.6.2 Co與Zn添加之影響 20 2.7 研究動機與目的 21 第3章 實驗方法與分析原理 22 3.1 實驗材料與藥品 22 3.2 實驗流程與步驟 23 3.3 實驗目標 24 3.4 性質量測與分析 24 3.4.1 X光繞射儀(X-ray Diffraction Spectrometer, XRD) 24 3.4.2 場發掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 26 3.4.3 穿透式電子顯微鏡(Transmission electron microscope, TEM) 27 3.4.4 X光光電子光譜儀(X-ray Photoelectron Spectrometer, XPS) 28 3.4.5 超導量子干涉儀(Superconducting Quantum Interference Device, SQUID) 28 第4章 結果與討論 31 4.1 前驅物中不同價數鐵離子比例之影響 31 4.1.1 XRD晶體結構分析 31 4.1.2 表面形貌分析 33 4.1.3 磁性質分析 36 4.2 反應環境中不同酸鹼值之影響 40 4.2.1 XRD晶體結構分析 40 4.2.2 表面形貌分析 42 4.2.3 XPS光譜分析 44 4.2.4 磁性質分析 47 4.3 Mn離子添加之影響 50 4.3.1 XRD晶體結構分析 50 4.3.2 表面形貌分析 53 4.3.3 XPS組成分析 55 4.3.4 磁性質分析 60 4.4 Zn離子添加之影響 63 4.4.1 XRD晶體結構分析 63 4.4.2 表面形貌分析 66 4.4.3 XPS組成分析 68 4.4.4 磁性質分析 72 4.5 Mn離子及Zn離子添加之影響 75 4.5.1 XRD晶體結構分析 75 4.5.2 表面形貌分析 81 4.5.3 XPS組成分析 85 4.5.4 磁性質分析 91 第5章 結論 96 第6章 參考文獻 97

    [1] F. Y. Cheng et al., "Characterization of aqueous dispersions of Fe(3)O(4) nanoparticles and their biomedical applications," Biomaterials, vol. 26, no. 7, pp. 729-38, Mar 2005.
    [2] S. Sun et al., "Monodisperse MFe2O4 (M ) Fe, Co, Mn) Nanoparticles," Journal of the American Chemical Society, vol. 126(1), pp. 273-279, 2004.
    [3] Z.-L. Wang, H. Ma, F. Wang, M. Li, L.-G. Zhang, and X.-H. Xu, "Controllable Synthesis and Magnetic Properties of Monodisperse Fe3O4Nanoparticles," Chinese Physics Letters, vol. 33, no. 10, 2016.
    [4] U. Khan, N. Shah Khattak, A. Rahman, and F. Khan, Historical Development of Magnetite Nanoparticles Synthesis. 2011, pp. 793-804.
    [5] M. Zrínyi, L. Barsi, and A. Büki, "Deformation of ferrogels induced by nonuniform magnetic fields," The Journal of Chemical Physics, vol. 104, no. 21, pp. 8750-8756, 1996.
    [6] G. Herzer, "Modern soft magnets: Amorphous and nanocrystalline materials," Acta Materialia, vol. 61, no. 3, pp. 718-734, 2013.
    [7] M. E. McHenry, M. A. Willard, and D. E. Laughlin, "Amorphous and nanocrystalline materials for applications as soft magnets," Progress in Materials Science, vol. 44, no. 4, pp. 291-433, 1999/10/01/ 1999.
    [8] R. Vijayakumar, Y. Koltypin, I. Felner, and A. Gedanken, "Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles," Materials Science and Engineering: A, vol. 286, no. 1, pp. 101-105, 2000/06/30/ 2000.
    [9] H.-J. Cui, J.-W. Shi, B. Yuan, and M.-L. Fu, "Synthesis of porous magnetic ferrite nanowires containing Mn and their application in water treatment," Journal of Materials Chemistry A, vol. 1, no. 19, 2013.
    [10] V. A. M. Brabers, F. Walz, and H. Kronmüller, "Impurity effects upon the Verwey transition in magnetite," Physical Review B, vol. 58, no. 21, pp. 14163-14166, 12/01/ 1998.
    [11] S. Chen, J. Feng, X. Guo, J. Hong, and W. Ding, "One-step wet chemistry for preparation of magnetite nanorods," Materials Letters, vol. 59, no. 8-9, pp. 985-988, 2005.
    [12] C. R. Vestal and Z. J. Zhang, "Effects of Surface Coordination Chemistry on the Magnetic Properties of MnFe2O4 Spinel Ferrite Nanoparticles," Journal of the American Chemical Society, vol. 125, no. 32, pp. 9828-9833, 2003/08/01 2003.
    [13] D. Bhattacharya, A. Baksi, I. Banerjee, R. Ananthakrishnan, T. K. Maiti, and P. Pramanik, "Development of phosphonate modified Fe(1−x)MnxFe2O4 mixed ferrite nanoparticles: Novel peroxidase mimetics in enzyme linked immunosorbent assay," Talanta, vol. 86, pp. 337-348, 2011/10/30/ 2011.
    [14] H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, and Y. Li, "Monodisperse magnetic single‐crystal ferrite microspheres," Angewandte Chemie, vol. 117, no. 18, pp. 2842-2845, 2005.
    [15] D. Kim, Y. Zhang, W. Voit, K. Rao, and M. Muhammed, "Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 225, no. 1-2, pp. 30-36, 2001.
    [16] J. E. House, "Chapter 7 - Ionic Bonding and Structures of Solids," in Inorganic Chemistry (Second Edition), J. E. House, Ed.: Academic Press, 2013, pp. 201-242.
    [17] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements. Elsevier, 2012.
    [18] A. F. Cotton, G. Wilkinson, M. Bochmann, and C. A. Murillo, Advanced inorganic chemistry. Wiley, 1999.
    [19] G. Hammes, Principles of chemical kinetics. Elsevier, 2012.
    [20] M. Suzuki and I. S. Suzuki, "Lecture note on solid state physics Superexchange interaction," Binghamton, New York, pp. 13902-16000, 2009.
    [21] J. Goodenough, "Magnetism and the Chemical Bond (Interscience, New York, 1963; Metallurgiya, Moscow, 1968)," Google Scholar, p. 182.
    [22] C. Chinnasamy et al., "Mixed spinel structure in nanocrystalline NiFe 2 O 4," Physical Review B, vol. 63, no. 18, p. 184108, 2001.
    [23] Z. Ahmad, Principles of corrosion engineering and corrosion control. Elsevier, 2006.
    [24] C. A. Gorski, R. Edwards, M. Sander, T. B. Hofstetter, and S. M. Stewart, "Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples," Environmental science & technology, vol. 50, no. 16, pp. 8538-8547, 2016.
    [25] R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons, 2008.
    [26] M. Pourbaix, "Thermodynamics and corrosion," Corrosion Science, vol. 30, no. 10, pp. 963-988, 1990.
    [27] A. Keshtkar, A. Maghoul, and A. Kalantarnia, "Magnetic shield effectiveness in low frequency," International Journal of Computer and Electrical Engineering, vol. 3, no. 4, p. 507, 2011.
    [28] Y. Okazaki and K. Ueno, "Magnetic shielding by soft magnetic materials in alternating magnetic field," Journal of magnetism and magnetic materials, vol. 112, no. 1-3, pp. 192-194, 1992.
    [29] O. Bottauscio, M. Chiampi, D. Chiarabaglio, and M. Zucca, "Use of grain-oriented materials in low-frequency magnetic shielding," Journal of magnetism and magnetic materials, vol. 215, pp. 130-132, 2000.
    [30] X. Bi, J. Wang, W. Lan, S. Gong, and H. Xu, "Concentration dependence of microstructure and soft magnetic properties in the FeSi–ZrO2 granular films," Journal of Magnetism and Magnetic Materials, vol. 281, no. 2-3, pp. 290-294, 2004.
    [31] M. Anhalt and B. Weidenfeller, "Dynamic losses in FeSi filled polymer bonded soft magnetic composites," Journal of Magnetism and Magnetic Materials, vol. 304, no. 2, pp. e549-e551, 2006.
    [32] M. Lauda et al., "Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites," Journal of Magnetism and Magnetic Materials, vol. 411, pp. 12-17, 2016.
    [33] Z. Nedjem, T. Seghier, and A. Hadjadj, "New multilayer arrangement of dielectric layers for enhancement of the magnetic shielding absorption at low frequency in the near field," Journal of Materials Science: Materials in Electronics, vol. 27, no. 4, pp. 3202-3208, 2015.
    [34] D. Chung, "Electromagnetic interference shielding effectiveness of carbon materials," carbon, vol. 39, no. 2, pp. 279-285, 2001.
    [35] M. H. Al-Saleh and U. Sundararaj, "Electromagnetic interference shielding mechanisms of CNT/polymer composites," Carbon, vol. 47, no. 7, pp. 1738-1746, 2009.
    [36] C.-W. Chen, Magnetism and metallurgy of soft magnetic materials. Courier Corporation, 2013.
    [37] W. D. Callister and D. G. Rethwisch, Materials science and engineering. John Wiley & Sons NY, 2011.
    [38] R. M. Bozorth, "Ferromagnetism," Ferromagnetism, by Richard M. Bozorth, pp. 992. ISBN 0-7803-1032-2. Wiley-VCH, August 1993., p. 992, 1993.
    [39] F. Brockman, "MAGNETIC CERAMICS: A REVIEW AND STATUS REPORT," Philips Labs., Braircliff Manor, NY1968.
    [40] D. J. Craik, "Magnetism: principles and applications," Magnetism: Principles and Applications, by Derek J. Craik, pp. 468. ISBN 0-471-95417-9. Wiley-VCH, September 2003., p. 468, 2003.
    [41] D. Jiles, Introduction to magnetism and magnetic materials. CRC press, 2015.
    [42] A. H. Morrish, "The physical principles of magnetism," The Physical Principles of Magnetism, by Allan H. Morrish, pp. 696. ISBN 0-7803-6029-X. Wiley-VCH, January 2001., p. 696, 2001.
    [43] R. C. O'handley, Modern magnetic materials: principles and applications. Wiley, 2000.
    [44] N. A. Spaldin and N. D. Mathur, "Magnetic materials: fundamentals and device applications," Physics Today, vol. 56, no. 12, pp. 62-63, 2003.
    [45] A. Srinivasan and A. Perumal, "Physics of Magnetic Recording and Recording Media," 2014.
    [46] S. Anjum, R. Tufail, K. Rashid, R. Zia, and S. Riaz, "Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles," Journal of Magnetism and Magnetic Materials, vol. 432, pp. 198-207, 2017.
    [47] D. Tripathy, A. Adeyeye, C. Boothroyd, and S. Piramanayagam, "Magnetic and transport properties of Co-doped Fe 3 O 4 films," Journal of applied physics, vol. 101, no. 1, p. 013904, 2007.
    [48] C. Pereira et al., "Superparamagnetic MFe2O4 (M= Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route," Chemistry of Materials, vol. 24, no. 8, pp. 1496-1504, 2012.
    [49] Y. Zhan, C. Xu, M. Lu, Z. Liu, and J. Y. Lee, "Mn and Co co-substituted Fe 3 O 4 nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution," Journal of Materials Chemistry A, vol. 2, no. 38, pp. 16217-16223, 2014.
    [50] J. Giri et al., "Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1− xBxFe2O4, B= Mn, Co (x= 0–1)] for biomedical applications," Journal of Magnetism and Magnetic Materials, vol. 320, no. 5, pp. 724-730, 2008.
    [51] C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, "Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings," Journal of the American Chemical Society, vol. 122, no. 26, pp. 6263-6267, 2000.
    [52] Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, and W. Song, "Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 321, no. 9, pp. 1251-1255, 2009.
    [53] S. Zhang, H. Niu, Y. Cai, X. Zhao, and Y. Shi, "Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4," Chemical Engineering Journal, vol. 158, no. 3, pp. 599-607, 2010.
    [54] D. Carta et al., "A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M= Mn, Co, Ni)," The Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8606-8615, 2009.
    [55] E. De Grave, R. Persoons, R. Vandenberghe, and P. De Bakker, "Mössbauer study of the high-temperature phase of Co-substituted magnetites, Co x Fe 3− x O 4. I. x≤ 0.04," Physical Review B, vol. 47, no. 10, p. 5881, 1993.
    [56] V. Antonov, B. Harmon, and A. Yaresko, "Electronic structure and x-ray magnetic circular dichroism in Fe 3 O 4 and Mn-, Co−, or Ni-substituted Fe 3 O 4," Physical Review B, vol. 67, no. 2, p. 024417, 2003.
    [57] R. Amrousse, A. Tsutsumi, A. Bachar, and D. Lahcene, "N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates," Applied Catalysis A: General, vol. 450, pp. 253-260, 2013.
    [58] J. Chen, C. Sorensen, K. Klabunde, G. Hadjipanayis, E. Devlin, and A. Kostikas, "Size-dependent magnetic properties of MnFe 2 O 4 fine particles synthesized by coprecipitation," Physical review B, vol. 54, no. 13, p. 9288, 1996.
    [59] C. R. Vestal and Z. J. Zhang, "Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core," Nano Letters, vol. 3, no. 12, pp. 1739-1743, 2003.
    [60] C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, "Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites," The Journal of Physical Chemistry B, vol. 104, no. 6, pp. 1141-1145, 2000.
    [61] Z. Lv et al., "Magnetic behaviors of Mg-and Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size, dielectric response, and application of Fe3O4/carbon nanotube composites to anodes for lithium ion batteries," The Journal of Physical Chemistry C, vol. 119, no. 46, pp. 26128-26142, 2015.
    [62] J. Liu, Y. Bin, and M. Matsuo, "Magnetic behavior of Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size," The Journal of Physical Chemistry C, vol. 116, no. 1, pp. 134-143, 2011.
    [63] N. A. Spaldin, Magnetic materials: fundamentals and applications. Cambridge University Press, 2010.
    [64] S.-W. Cheong and M. Mostovoy, "Multiferroics: a magnetic twist for ferroelectricity," Nature materials, vol. 6, no. 1, p. 13, 2007.
    [65] Z. Huang, Q. Chen, S. Jiang, S. Dong, and Y. Zhai, "Ab initio understanding of magnetic properties in Zn2+ substitution of Fe3O4 ultra-thin film with dilute Zn substitution," AIP Advances, vol. 8, no. 5, p. 055807, 2018.
    [66] J. Wang, C. Zeng, Z. Peng, and Q. Chen, "Synthesis and magnetic properties of Zn1− xMnxFe2O4 nanoparticles," Physica B: Condensed Matter, vol. 349, no. 1-4, pp. 124-128, 2004.
    [67] Z. Beji, M. Sun, L. Smiri, F. Herbst, C. Mangeney, and S. Ammar, "Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural/microstructural characterization and catalytic application," RSC Advances, vol. 5, no. 80, pp. 65010-65022, 2015.
    [68] C. Rath et al., "Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite," Journal of Applied Physics, vol. 91, no. 4, pp. 2211-2215, 2002.
    [69] M. Feder et al., "Comparative Study on the Microstructural and Magnetic Properties of Cobalt Ferrites Synthesized by Ceramic and Oxidation Wet Methods," IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 2936-2939, 2008.
    [70] A. Ghasemi and E. Ghasemi, "Structural and magnetic susceptibility characteristics of Mn1−xCuxFe2O4 (x=0–0.4) nanoparticles synthesized by self-assembling confined media of reverse micelle," Journal of Alloys and Compounds, vol. 508, no. 2, pp. 565-569, 2010.
    [71] E. Ranjith Kumar, P. Siva Prasada Reddy, G. Sarala Devi, and S. Sathiyaraj, "Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe 2 O 4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 398, pp. 281-288, 2016.
    [72] A. Ghasemi et al., "The role of copper ions on the structural and magnetic characteristics of MgZn ferrite nanoparticles and thin films," Journal of Magnetism and Magnetic Materials, vol. 322, no. 20, pp. 3064-3071, 2010.
    [73] R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, and S. Sendhilnathan, "Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation," Journal of Magnetism and Magnetic Materials, vol. 288, pp. 470-477, 2005.
    [74] M. Ben Ali et al., "Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method," Journal of Magnetism and Magnetic Materials, vol. 398, pp. 20-25, 2016.
    [75] M. H. Yousefi, S. Manouchehri, A. Arab, M. Mozaffari, G. R. Amiri, and J. Amighian, "Preparation of cobalt–zinc ferrite (Co0.8Zn0.2Fe2O4) nanopowder via combustion method and investigation of its magnetic properties," Materials Research Bulletin, vol. 45, no. 12, pp. 1792-1795, 2010.
    [76] Q. Pankhurst and R. Pollard, "Origin of the spin-canting anomaly in small ferrimagnetic particles," Physical review letters, vol. 67, no. 2, p. 248, 1991.
    [77] 林麗娟, "X 光繞射原理及其應用," X 光材料分析技術與應用專題, 1994.
    [78] D. B. Williams and C. B. Carter, "The transmission electron microscope," in Transmission electron microscopy: Springer, 1996, pp. 3-17.
    [79] 楊鴻昌, "最敏感的感測元件 SQUID 及其前瞻性應用," 物理雙月刊, vol. 24, no. 5, pp. 652-665, 2002.
    [80] H. Weinstock, SQUID sensors: fundamentals, fabrication and applications. Springer Science & Business Media, 2012.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE