| 研究生: |
洪華陽 Hung, Hua-Yang |
|---|---|
| 論文名稱: |
振動篩板式微霧化器之噴嘴設計對霧化品質之影響 Effect of nozzle design on nebulization performance with vibrating mesh |
| 指導教授: |
王覺寬
Wang, Muh-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 呼吸給藥器 、振動式篩板 、噴嘴設計 、液體物理化學性質 |
| 外文關鍵詞: | Nebulizer, Vibrating mesh, Nozzle design, Fluid properties |
| 相關次數: | 點閱:116 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討微噴嘴片在陶瓷壓電片驅動下,各種液體產生噴霧之特性。設計之噴嘴片使用類LIGA技術,經由黃光微影搭配精密電鑄來製作,以產生微米級噴孔孔徑,材質為鎳鈷合金,將其上黏貼一環形陶瓷壓電片,作為噴嘴片之驅動元,並將50mm 50mm 70mm壓克力載水艙體與壓電噴嘴片組裝,作為本實驗之微霧化器。實驗時藉由訊號產生器輸出訊號,經高壓放大器放大電壓,驅動壓電噴嘴片共振後將流體加以霧化,用以探討不同液體及噴嘴設計之霧化特性。噴霧粒子則以Malvern RT-sizer進行即時之粒徑量測,並計算固定容量液體之完整噴霧時間及流率。
本實驗之工作液體為蒸餾水以及不同重量濃度百分比之甘油溶液、離子溶液(NaCl)和酒精溶液,改變噴嘴之噴孔孔徑大小、噴孔間距和噴孔位置,透過固定頻率、不同電壓及波形產生噴霧後進行測試。實驗結果顯示噴霧過程表面易形成液膜化現象,液膜與液滴之間產生交互作用,降低霧化品質。驅動電壓與波形可改變噴霧流率,波形為方波時有較佳的流率,而流率隨電壓增加而增加,但對噴霧粒徑不影響。噴霧粒徑受噴孔孔徑所主導,隨著孔徑增加,噴霧粒徑及流率都呈現上升的趨勢,結果顯示,小孔徑噴孔之噴發臨界條件與大孔徑截然不同,說明霧化的結果主要受噴嘴設計參數的影響,本實驗在驅動頻率101± 1% kHz、電壓43.6 Vp-p、方波的操作條件下,5 m的噴嘴孔徑下可以產生平均粒徑9.32 m流率0.23 g/min的噴霧;噴孔間距在110 m左右可有效防止液膜化形成,同時在噴霧流率及粒徑間取得一平衡值;噴孔位置在2.5 mm ~ 3.5 mm之環內,為噴嘴共振過程之最大位移處,1000孔、5 m之噴嘴可產生0.57 g/min的噴霧流率。實驗結果亦顯示,噴嘴表面處理會影響霧化結果,濺鍍疏水膜可防止液滴與液膜之間的交互作用,避免形成大顆粒之液滴;適當的曲面沖壓則可降低液滴追撞形成大顆粒的現象發生。不同的噴嘴表面加工將使霧化性能得到不同的改善。當使用的工作流體黏製係數提高時,噴霧粒徑及流率隨之下降,係因高黏度使得噴孔噴發不易,須更高能量驅動之,提高其臨界噴發條件;當離子溶液濃度提高時,噴霧粒徑不受影響,噴霧流率則呈現下降趨勢,係因在氣液交界處,產生電雙層效應,噴嘴出口易吸附帶有離子的溶液,使液滴不易噴發出去;當酒精溶液濃度提高時,噴霧粒徑隨之降低,是由於酒精高揮發性,在液滴噴發後,濃度較高的溶液易產生揮發,噴霧流率則隨之提高,是由於酒精表面張力降低,使得液滴較易突破臨界噴發點,但因酒精溶液所產生之霧化結果,具多種物理化學性質交互影響,須更進一步探討才能了解全貌。
In this study, the effect of operating conditions, nozzle design and fluid properties on the aerosol droplet size and output rate with vibrating mesh are investigated comprehensively. The increase in orifice size increases both aerosol droplet size and output rate, it plays the most important role in nozzle design. Nozzle pitch about 110 m can avoid forming liquid film. Moreover, nozzle position at ∅2.5 mm~∅3.5 mm with amounts of energy can generate 0.57 g/min aerosol with ∅5 m orifice. When the different fluid was employed, the commercial nebulizers compared with homemade one show a totally diverse performance. For instance, increased viscosity resulted in increase in Dv50 with the Beurer nebulizer, decrease in Dv50 with the Omron and homemade nebulizer but no clear trend with Aerogen nebulizer. It reveals that performance of vibrating mesh is highly affected by nozzle design and fluid properties, the overall nebulization should be further researched.
翁維隆(2009),「驅動模式對供需式壓電微噴嘴噴注特性之影響」,成功大學成功大學航空太空工程學系學位論文。
葉吉田 (1999), "噴墨列印技術在電子工業之應用," 電子與材料, 2, pp. 52-55.
Brenn, G., T. Helpiö, & F. Durst (1997), "A new apparatus for the production of monodisperse sprays at high flow rates," Chemical Engineering Science, 52(2), pp. 237-244.
Chetan, M., & A. Negoias (2011), "New approaches to nebulizer drug delivery," Paper presented at the Advanced Topics in Electrical Engineering (ATEE), 2011 7th International Symposium on, pp. 1-4.
Davis, S.S. (1978), "Physico-chemical studies on aerosol solutions for drug delivery I. Water-propylene glycol systems," Int J Pharm, 1(2), pp. 71-83.
De Heij, B., B. van der Schoot, H. Bo, J. Hess, & N.F. de Rooij (2000), "Characterisation of a fL droplet generator for inhalation drug therapy," Sensors and Actuators A: Physical, 85(1–3), pp. 430-434.
Dhand, R. (2002), "Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol," Respir Care, 47(12), pp. 1406-1416; discussion 1416-1408.
dos Santos, A.P., & Y. Levin (2012), "Surface and interfacial tensions of Hofmeister electrolytes," Faraday Discussions, 160, pp. 75.
Finlay, W.H., C.F. Lange, M. King, & D.P. Speert (2000), "Lung delivery of aerosolized dextran," Am J Respir Crit Care Med, 161(1), pp. 91-97.
Ghazanfari, T., A.M. Elhissi, Z. Ding, & K.M. Taylor (2007), "The influence of fluid physicochemical properties on vibrating-mesh nebulization," Int J Pharm, 339(1-2), pp. 103-111.
Greenspan, B.J. (1996), "Ultrasonic and electrohydrodynamic methods for aerosol generation," LUNG BIOLOGY IN HEALTH AND DISEASE, 94, pp. 313-335.
Hofmann, W. (1996), "Lung Morphometry and Particle Transport and Deposition: Overview of Existing Models," Aerosol Inhalation: Recent Research Frontiers, pp. 91-102.
Jeng, Y.-R., C.-C. Su, G.-H. Feng, Y.-Y. Peng, & G.-P. Chien (2009), "A PZT-driven atomizer based on a vibrating flexible membrane and a micro-machined trumpet-shaped nozzle array," Microsystem Technologies, 15(6), pp. 865-873.
Jungwirth, P., & D.J. Tobias (2001), "Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry," The Journal of Physical Chemistry B, 105(43), pp. 10468-10472.
Jungwirth, P., & D.J. Tobias (2000), "Surface Effects on Aqueous Ionic Solvation: A Molecular Dynamics Simulation Study of NaCl at the Air/Water Interface from Infinite Dilution to Saturation," The Journal of Physical Chemistry B, 104(32), pp. 7702-7706.
Jungwirth, P., & D.J. Tobias (2002), "Ions at the Air/Water Interface," The Journal of Physical Chemistry B, 106(25), pp. 6361-6373.
Jungwirth, P., & D.J. Tobias (2006), "Specific ion effects at the air/water interface," Chemical Reviews, 106(4), pp. 1259-1281.
Lass, J.S., A. Sant, & M. Knoch (2006), "New advances in aerosolised drug delivery: vibrating membrane nebuliser technology," Expert Opin Drug Deliv, 3(5), pp. 693-702.
Lin, C.-Y., H.-C. Meng, & C. Fu (2011), "An ultrasonic aerosol therapy nebulizer using electroformed palladium–nickel alloy nozzle plates," Sensors and Actuators A: Physical, 169(1), pp. 187-193.
Mc Callion, O.N.M., & M.J. Patel (1996), "Viscosity effects on nebulisation of aqueous solutions," Int J Pharm, 130(2), pp. 245-249.
McCallion, O.N., K.M. Taylor, M. Thomas, & A.J. Taylor (1995), "Nebulization of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers," Pharm Res, 12(11), pp. 1682-1688.
Najlah, M., A. Vali, M. Taylor, B.T. Arafat, W. Ahmed, D.A. Phoenix, . . . A. Elhissi (2013), "A study of the effects of sodium halides on the performance of air-jet and vibrating-mesh nebulizers," Int J Pharm, 456(2), pp. 520-527.
Newman, S., & A. Gee-Turner (2005), "The Omron MicroAir vibrating mesh technology nebuliser, a 21st century approach to inhalation therapy," Journal of Applied Therapeutic, 5(4), pp. 29-33.
Newman, S.P., P.G. Pellow, & S.W. Clarke (1986), "Choice of nebulisers and compressors for delivery of carbenicillin aerosol," European journal of respiratory diseases, 69(3), pp. 160-168.
Newman, S.P., P.G. Pellow, M.M. Clay, & S.W. Clarke (1985), "Evaluation of jet nebulisers for use with gentamicin solution," Thorax, 40(9), pp. 671-676.
Niven, R.W. (1996), "Atomization and nebulizers," LUNG BIOLOGY IN HEALTH AND DISEASE, 94, pp. 273-312.
Niven, R.W., A.Y. Ip, S. Mittelman, S.J. Prestrelski, & T. Arakawa (1995), "Some factors associated with the ultrasonic nebulization of proteins," Pharm Res, 12(1), pp. 53-59.
O'Callaghan, C., & P.W. Barry (1997), "The science of nebulised drug delivery," Thorax, 52(Supplement 2), pp. S31-S44.
Pan, C.T., J. Shiea, & S.C. Shen (2007), "Fabrication of an integrated piezo-electric micro-nebulizer for biochemical sample analysis," Journal of Micromechanics and Microengineering, 17(3), pp. 659-669.
Shen, S.C. (2010), "A new cymbal-shaped high power microactuator for nebulizer application," Microelectronic Engineering, 87(2), pp. 89-97.
Smye, S.W., M.I. Jollie, H. Cunliffe, & J.M. Littlewood (1992), "Measurement and prediction of drug solvent losses by evaporation from a jet nebuliser," Clin Phys Physiol Meas, 13(2), pp. 129-134.
Steckel, H., & F. Eskandar (2003), "Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers," European Journal of Pharmaceutical Sciences, 19(5), pp. 443-455.
Strutt, J.W., & L. Rayleigh (1879), "On the instability of jets," Paper presented at the Proc. R. Soc. London A, pp. 4-13.
Vecellio, L. (2006), "The mesh nebuliser: a recent technical innovation for aerosol delivery," Breathe, 2(3), pp. 252-260.
Yeo, L.Y., J.R. Friend, M.P. McIntosh, E.N. Meeusen, & D.A. Morton (2010), "Ultrasonic nebulization platforms for pulmonary drug delivery," Expert Opin Drug Deliv, 7(6), pp. 663-679.
校內:2019-08-28公開