簡易檢索 / 詳目顯示

研究生: 洪華陽
Hung, Hua-Yang
論文名稱: 振動篩板式微霧化器之噴嘴設計對霧化品質之影響
Effect of nozzle design on nebulization performance with vibrating mesh
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 115
中文關鍵詞: 呼吸給藥器振動式篩板噴嘴設計液體物理化學性質
外文關鍵詞: Nebulizer, Vibrating mesh, Nozzle design, Fluid properties
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討微噴嘴片在陶瓷壓電片驅動下,各種液體產生噴霧之特性。設計之噴嘴片使用類LIGA技術,經由黃光微影搭配精密電鑄來製作,以產生微米級噴孔孔徑,材質為鎳鈷合金,將其上黏貼一環形陶瓷壓電片,作為噴嘴片之驅動元,並將50mm  50mm  70mm壓克力載水艙體與壓電噴嘴片組裝,作為本實驗之微霧化器。實驗時藉由訊號產生器輸出訊號,經高壓放大器放大電壓,驅動壓電噴嘴片共振後將流體加以霧化,用以探討不同液體及噴嘴設計之霧化特性。噴霧粒子則以Malvern RT-sizer進行即時之粒徑量測,並計算固定容量液體之完整噴霧時間及流率。
    本實驗之工作液體為蒸餾水以及不同重量濃度百分比之甘油溶液、離子溶液(NaCl)和酒精溶液,改變噴嘴之噴孔孔徑大小、噴孔間距和噴孔位置,透過固定頻率、不同電壓及波形產生噴霧後進行測試。實驗結果顯示噴霧過程表面易形成液膜化現象,液膜與液滴之間產生交互作用,降低霧化品質。驅動電壓與波形可改變噴霧流率,波形為方波時有較佳的流率,而流率隨電壓增加而增加,但對噴霧粒徑不影響。噴霧粒徑受噴孔孔徑所主導,隨著孔徑增加,噴霧粒徑及流率都呈現上升的趨勢,結果顯示,小孔徑噴孔之噴發臨界條件與大孔徑截然不同,說明霧化的結果主要受噴嘴設計參數的影響,本實驗在驅動頻率101± 1% kHz、電壓43.6 Vp-p、方波的操作條件下,5 m的噴嘴孔徑下可以產生平均粒徑9.32 m流率0.23 g/min的噴霧;噴孔間距在110 m左右可有效防止液膜化形成,同時在噴霧流率及粒徑間取得一平衡值;噴孔位置在2.5 mm ~ 3.5 mm之環內,為噴嘴共振過程之最大位移處,1000孔、5 m之噴嘴可產生0.57 g/min的噴霧流率。實驗結果亦顯示,噴嘴表面處理會影響霧化結果,濺鍍疏水膜可防止液滴與液膜之間的交互作用,避免形成大顆粒之液滴;適當的曲面沖壓則可降低液滴追撞形成大顆粒的現象發生。不同的噴嘴表面加工將使霧化性能得到不同的改善。當使用的工作流體黏製係數提高時,噴霧粒徑及流率隨之下降,係因高黏度使得噴孔噴發不易,須更高能量驅動之,提高其臨界噴發條件;當離子溶液濃度提高時,噴霧粒徑不受影響,噴霧流率則呈現下降趨勢,係因在氣液交界處,產生電雙層效應,噴嘴出口易吸附帶有離子的溶液,使液滴不易噴發出去;當酒精溶液濃度提高時,噴霧粒徑隨之降低,是由於酒精高揮發性,在液滴噴發後,濃度較高的溶液易產生揮發,噴霧流率則隨之提高,是由於酒精表面張力降低,使得液滴較易突破臨界噴發點,但因酒精溶液所產生之霧化結果,具多種物理化學性質交互影響,須更進一步探討才能了解全貌。

    In this study, the effect of operating conditions, nozzle design and fluid properties on the aerosol droplet size and output rate with vibrating mesh are investigated comprehensively. The increase in orifice size increases both aerosol droplet size and output rate, it plays the most important role in nozzle design. Nozzle pitch about 110 m can avoid forming liquid film. Moreover, nozzle position at ∅2.5 mm~∅3.5 mm with amounts of energy can generate 0.57 g/min aerosol with ∅5 m orifice. When the different fluid was employed, the commercial nebulizers compared with homemade one show a totally diverse performance. For instance, increased viscosity resulted in increase in Dv50 with the Beurer nebulizer, decrease in Dv50 with the Omron and homemade nebulizer but no clear trend with Aerogen nebulizer. It reveals that performance of vibrating mesh is highly affected by nozzle design and fluid properties, the overall nebulization should be further researched.

    中文摘要 Ⅰ Abstract Ⅲ 誌謝 Ⅵ 目錄 Ⅶ 表目錄 Ⅹ 圖目錄 XI 符號說明 ⅩVI 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 4 1-2-1 液體霧化機制 4 1-2-2 霧化器的設計 8 1-2-3 液體物理化學性質 12 1-3 研究動機與目的 17 第二章 實驗設備及儀器 18 2-1 實驗設備 18 2-1-1 噴霧測試台與抽氣整流系統 18 2-1-2 壓電噴嘴片之驅動系統 19 2-1-3 霧化裝置 20 2-1-3-1 商用振動式篩板霧化器 20 2-1-3-2 自製噴嘴之模組 21 2-1-3-3 壓電元件之規格 23 2-1-3-4 工作液體供應容器 24 2-2 量測儀器 27 2-2-1 粒徑量測分析裝置 28 2-2-2 流率量測電子秤 30 2-2-3 影像擷取系統 31 2-2-4 黏度量測儀 32 2-2-5 表面張力量測儀 33 2-2-6 導電度量測儀 33 第三章 實驗步驟及方法 35 3-1 工作液體物理特性之量測 35 3-2 微噴嘴之噴嘴孔設計與表面處理條件 36 3-2-1 微噴嘴之噴嘴孔設計 36 3-2-2 噴嘴出口之表面處理 38 3-3 微噴嘴之驅動電壓與波形 39 3-4 噴霧粒徑量測分析 40 3-5 噴注量與流率之量測 40 3-6 噴嘴出口之表面現象觀測 41 第四章 結果與討論 43 4-1 外部激擾對自製霧化器之噴霧性能測試 43 4-1-1 噴嘴之工作區間 43 4-1-2 外部激擾電壓對噴霧粒徑及流率之影響 46 4-1-3 液膜化現象分析 49 4-1-3-1 液膜化現象觀測 49 4-1-3-2 液膜化對噴霧性能之影響 50 4-1-3-3 商用噴嘴之表面觀測 54 4-1-4 液滴產生機制分析 56 4-2 不同噴嘴片設計對物化品質之影響 59 4-2-1 噴嘴片之設計參數變化 59 4-2-1-1 噴孔孔徑對噴霧粒徑及流率之影響 59 4-2-1-2 噴孔孔距對噴霧粒徑及流率之影響 68 4-2-1-3 噴孔分布對噴霧粒徑及流率之影響 74 4-2-2 噴嘴片之表面處理 78 4-2-2-1 噴嘴表面鍍膜對噴霧粒徑及流率之影響 78 4-2-2-2 噴嘴曲面加工對噴霧粒徑及流率之影響 87 4-3 不同液體物理化學特性對霧化品質之影響 95 4-3-1 商用噴嘴之噴霧特性 95 4-3-1-1 液體黏製係數效應 96 4-3-1-2 液體離子濃度效應 100 4-3-2 自製噴嘴之噴霧特性 103 4-3-2-1 黏製係數對噴霧粒徑及流率之影響 103 4-3-2-2 離子濃度對噴霧粒徑及流率之影響 105 4-3-2-3 酒精濃度對噴霧粒徑及流率之影響 108 第五章 結論與未來工作 110 5-1 結論 110 5-2 未來工作 112 參考文獻 113

    翁維隆(2009),「驅動模式對供需式壓電微噴嘴噴注特性之影響」,成功大學成功大學航空太空工程學系學位論文。
    葉吉田 (1999), "噴墨列印技術在電子工業之應用," 電子與材料, 2, pp. 52-55.
    Brenn, G., T. Helpiö, & F. Durst (1997), "A new apparatus for the production of monodisperse sprays at high flow rates," Chemical Engineering Science, 52(2), pp. 237-244.
    Chetan, M., & A. Negoias (2011), "New approaches to nebulizer drug delivery," Paper presented at the Advanced Topics in Electrical Engineering (ATEE), 2011 7th International Symposium on, pp. 1-4.
    Davis, S.S. (1978), "Physico-chemical studies on aerosol solutions for drug delivery I. Water-propylene glycol systems," Int J Pharm, 1(2), pp. 71-83.
    De Heij, B., B. van der Schoot, H. Bo, J. Hess, & N.F. de Rooij (2000), "Characterisation of a fL droplet generator for inhalation drug therapy," Sensors and Actuators A: Physical, 85(1–3), pp. 430-434.
    Dhand, R. (2002), "Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol," Respir Care, 47(12), pp. 1406-1416; discussion 1416-1408.
    dos Santos, A.P., & Y. Levin (2012), "Surface and interfacial tensions of Hofmeister electrolytes," Faraday Discussions, 160, pp. 75.
    Finlay, W.H., C.F. Lange, M. King, & D.P. Speert (2000), "Lung delivery of aerosolized dextran," Am J Respir Crit Care Med, 161(1), pp. 91-97.
    Ghazanfari, T., A.M. Elhissi, Z. Ding, & K.M. Taylor (2007), "The influence of fluid physicochemical properties on vibrating-mesh nebulization," Int J Pharm, 339(1-2), pp. 103-111.
    Greenspan, B.J. (1996), "Ultrasonic and electrohydrodynamic methods for aerosol generation," LUNG BIOLOGY IN HEALTH AND DISEASE, 94, pp. 313-335.
    Hofmann, W. (1996), "Lung Morphometry and Particle Transport and Deposition: Overview of Existing Models," Aerosol Inhalation: Recent Research Frontiers, pp. 91-102.
    Jeng, Y.-R., C.-C. Su, G.-H. Feng, Y.-Y. Peng, & G.-P. Chien (2009), "A PZT-driven atomizer based on a vibrating flexible membrane and a micro-machined trumpet-shaped nozzle array," Microsystem Technologies, 15(6), pp. 865-873.
    Jungwirth, P., & D.J. Tobias (2001), "Molecular Structure of Salt Solutions:  A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry," The Journal of Physical Chemistry B, 105(43), pp. 10468-10472.
    Jungwirth, P., & D.J. Tobias (2000), "Surface Effects on Aqueous Ionic Solvation:  A Molecular Dynamics Simulation Study of NaCl at the Air/Water Interface from Infinite Dilution to Saturation," The Journal of Physical Chemistry B, 104(32), pp. 7702-7706.
    Jungwirth, P., & D.J. Tobias (2002), "Ions at the Air/Water Interface," The Journal of Physical Chemistry B, 106(25), pp. 6361-6373.
    Jungwirth, P., & D.J. Tobias (2006), "Specific ion effects at the air/water interface," Chemical Reviews, 106(4), pp. 1259-1281.
    Lass, J.S., A. Sant, & M. Knoch (2006), "New advances in aerosolised drug delivery: vibrating membrane nebuliser technology," Expert Opin Drug Deliv, 3(5), pp. 693-702.
    Lin, C.-Y., H.-C. Meng, & C. Fu (2011), "An ultrasonic aerosol therapy nebulizer using electroformed palladium–nickel alloy nozzle plates," Sensors and Actuators A: Physical, 169(1), pp. 187-193.
    Mc Callion, O.N.M., & M.J. Patel (1996), "Viscosity effects on nebulisation of aqueous solutions," Int J Pharm, 130(2), pp. 245-249.
    McCallion, O.N., K.M. Taylor, M. Thomas, & A.J. Taylor (1995), "Nebulization of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers," Pharm Res, 12(11), pp. 1682-1688.
    Najlah, M., A. Vali, M. Taylor, B.T. Arafat, W. Ahmed, D.A. Phoenix, . . . A. Elhissi (2013), "A study of the effects of sodium halides on the performance of air-jet and vibrating-mesh nebulizers," Int J Pharm, 456(2), pp. 520-527.
    Newman, S., & A. Gee-Turner (2005), "The Omron MicroAir vibrating mesh technology nebuliser, a 21st century approach to inhalation therapy," Journal of Applied Therapeutic, 5(4), pp. 29-33.
    Newman, S.P., P.G. Pellow, & S.W. Clarke (1986), "Choice of nebulisers and compressors for delivery of carbenicillin aerosol," European journal of respiratory diseases, 69(3), pp. 160-168.
    Newman, S.P., P.G. Pellow, M.M. Clay, & S.W. Clarke (1985), "Evaluation of jet nebulisers for use with gentamicin solution," Thorax, 40(9), pp. 671-676.
    Niven, R.W. (1996), "Atomization and nebulizers," LUNG BIOLOGY IN HEALTH AND DISEASE, 94, pp. 273-312.
    Niven, R.W., A.Y. Ip, S. Mittelman, S.J. Prestrelski, & T. Arakawa (1995), "Some factors associated with the ultrasonic nebulization of proteins," Pharm Res, 12(1), pp. 53-59.
    O'Callaghan, C., & P.W. Barry (1997), "The science of nebulised drug delivery," Thorax, 52(Supplement 2), pp. S31-S44.
    Pan, C.T., J. Shiea, & S.C. Shen (2007), "Fabrication of an integrated piezo-electric micro-nebulizer for biochemical sample analysis," Journal of Micromechanics and Microengineering, 17(3), pp. 659-669.
    Shen, S.C. (2010), "A new cymbal-shaped high power microactuator for nebulizer application," Microelectronic Engineering, 87(2), pp. 89-97.
    Smye, S.W., M.I. Jollie, H. Cunliffe, & J.M. Littlewood (1992), "Measurement and prediction of drug solvent losses by evaporation from a jet nebuliser," Clin Phys Physiol Meas, 13(2), pp. 129-134.
    Steckel, H., & F. Eskandar (2003), "Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers," European Journal of Pharmaceutical Sciences, 19(5), pp. 443-455.
    Strutt, J.W., & L. Rayleigh (1879), "On the instability of jets," Paper presented at the Proc. R. Soc. London A, pp. 4-13.
    Vecellio, L. (2006), "The mesh nebuliser: a recent technical innovation for aerosol delivery," Breathe, 2(3), pp. 252-260.
    Yeo, L.Y., J.R. Friend, M.P. McIntosh, E.N. Meeusen, & D.A. Morton (2010), "Ultrasonic nebulization platforms for pulmonary drug delivery," Expert Opin Drug Deliv, 7(6), pp. 663-679.

    無法下載圖示 校內:2019-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE