| 研究生: |
李淯瑄 Li, Yu-Shiuan |
|---|---|
| 論文名稱: |
以微陣列晶片和生物資訊研究法探討急性劇烈運動下白血球基因表現的影響 Effects of acute severe exercise on the genes expression of human leukocytes:Microarray and bioinformatic appraoch |
| 指導教授: |
陳洵瑛
Chen, Hsiun-ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 急性劇烈運動 、微陣列晶片 、生物資訊 、熱休克轉錄因子 、白血球 |
| 外文關鍵詞: | acute svere exercise, HSF-1, lekocytes, Microarray, bioinformatic |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去已經發現在急性劇烈運動下,體內會產生大量的熱使得體溫升高和產生氧化壓力。這兩種壓力會造成細胞內的熱休克轉錄因子 (heat shock factor-1; HSF-1) 改變下游基因的轉錄效率。根據微陣列晶片結果發現在急性劇烈腳踏車運動後,很多白血球的基因會發生改變。因此我們透過生物資訊的網路平台 (TESS和Ensembl) 探討在93條急性運動後表現會上升的基因,其在啟動子的區段又含有 HSF-1 的結合位 (hsf-1 binding element; HSE) 的四條基因的表現。首先,我們探討在急性劇烈運動後是否可以藉由活化 HSF-1 進而去調控下游基因。我們抽取受試者運動前後以及抽出後單純透過加熱處理的靜脈血,分離出靜脈血中的白血球後,利用免疫染色發現,只有在加熱組的白血球細胞核中發現 HSF-1 有聚集的現象,而急性劇烈運動後則沒有這種現象發生。接著,利用 real time PCR 確認啟動子區段具有 HSE 的微陣列基因表現,結果發現在運動後 HSPA1B 和 CST7 基因 的mRNA 表現量顯著上升,而 PTGDR 和 CD244 則沒有顯著性改變。最後,利用 luciferase assay 分析這些基因的啟動子活性則發現,HSPA1B 的啟動子活性在加熱後第12和24小時,分別上升約2.4倍和20%。,PTGDR 和 CD244 的啟動子活性僅在加熱後第12小時有些微上升。因此,我們發現只有加熱處理可以促進HSF-1進入細胞核中;另外,急性劇烈運動使其下游基因HSPA1B 和 CST7的表現量上升。而HSPA1B基因的表現量增加則可能和其啟動子活化有很大的關聯。
It is known that acute severe exercise induces heat production and oxidative stress. These changes may activate heat shock factor-1 (HSF-1) and alter the transcriptional rate of downstream genes. The results of Affymetrix microarray by using human leukocytes demonstrated that the expression of many genes was changed after acute severe ergometer exercise. Using bioinformatic online platforms, such as TESS and Ensembl, we found that the promoter regions of 8 out of 93 severe exercise-upregulated genes might have hsf-1 binding element (HSE). To investigate whether acute severe exercise activates the transcription factor, hsf-1, and hence regulates these genes in leukocytes, male subjects were subjected to a single bout of severe exercise until exhaustion. Venous blood samples were collected before and after exercise, and collected only for heat treatment. The immunocytochemistry results found that HSF-1 just translocated into leukocytes nucleus after heat treatment but not after acute severe exercise. In addition, Real-time PCR was used to detect the mRNA levels of the genes which are upregulated by acute exercise and may have HSE in their promoter regions. Our results confirmed that acute severe exercise induces expression of two genes, HSPA1B and CST7, but doesn’t change the expression of PTGDR and CD244. Furthermore, luciferase assay was used to investigate whether the gene upregulation is related to their HSE promoter activities. The results showed that heat shock treatment only induced about 2.4-fold and 20% increase of HSPA1B promoter activity in 12 and 24 hours after heat shock, and PTGDR and CD244 promoter activities were slightly increased only in 12 hours after heat sock. In conclusion, we found that only heat shock treatment can induce HSF-1 to translocate into nucleus. However, acute severe exercise increased the mRNA expressions of its downstream genes, HSPA1B and CST7 and the upregulation of HSPA1B gene may be related to the enhancement of its promoter activity.
Amin, J., Ananthan, J., and Voellmy, R. Key features of heat shock
regulatory elements. Mol. Cell Biol. 1988; 8:3761-3769.
Antunes-Neto, J.M.F., Totama, M.H., Carneiro, E.M., Boschero A.C.,
Pereira-Da-Silva, L., and Macedo, D.V. Circulating leukocyte heat shock
protein 70 and oxidative stress markers in rats after a bout of exhaustive
exercise. Stress 2006; 9:107-115.
Boles, K.S., Nakajima, H., Colonna, M., Chuang, S.S., Stepp, S.E., Bennett,
M., Kumar, V., and Mathew, P. A. Molecular characterization of a novel
human natural killer cell receptor homologous to mouse 2B4. Tissue
Antigens 1999; 54:27-34.
Brines, R., Hoffman-Goetz, L., and Pedersen, B.K. Can you exercise to
make your immune system fitter? Immunol. Today 1996; 17:252-254.
Chin, K.V., Tanaka, S., Darlington, G., Pastan, I., and Gottesman, M.M. Heat
shock and arsenite increase expression of the multidrug resistance
(LMDRl) gene in human renal carcinoma cells. JBC 1990; 265:221-226.
Christians, E.S., Yan L.J., and Benjamin, I.J. Heat shock factor 1 and heat
shock proteins: Critical partners in protection against acute cell injury.
Crit. Care. Med. 2002; 30:S44-S50.
Christians, E., Davis, A.A., Thomas, S.D., and Benjamin, I.J. Maternal effect
of hsf1 on reproductive success. Nature 2000; 407:693–694.
Connolly, P.H., Caiozzo, V.J., Zaldivar, F., Nemet, D., Larson, J., Hung, S.P.,
J. Heck, D., Hatfield, G.W., and Cooper D.M. Effects of exercise on gene
expression in human peripheral blood mononuclear cells. J. Appl. Physiol.
2004; 97:1461–1469.
Cooper, D.M., Radom-Aizik, S., Schwindt, C.D., and Zaldivar, F. Dangerous
exercise -Lessons learned from dysregulated inflammatory responses tophysical activity. J. Appl. Physiol 2007; 103:700-709.
Cooper, C.E., Vollaard, N.B.J., Choueiri, T., and Wilson, M.T. Exercise, free
radicals and oxidative stress. Biochemical Society Transactions 2002;
30:280-285.
Dimeo, F., Bauer, M., Varahram, I., Proest, G., and Halter, U. Benefits from
aerobic exercise in patients with major depreesion: a pilot study. Br. J.
Sports Med. 2001; 35:114-117.
Halfon, S., Ford, J., Foster, J., Dowling, L., Lucian, L., Sterling, M., Xu, Y.,
Weiss, M., Ikeda, M., Liggett, D., Helms, A., Caux, C., Lebecque, S.,
Hannum, C., Menon, S., McClanahan, T., Gorman, D., and Zurawski, G.
Leukocystatin, A New class II cystatin expressed selectively by
hematopoietic cells. JBC 1998; 273:16400-16408.
Hanna, J., Bechtel, P., Zhai, Y., Youssef, F., McLachlan, K. and Mandelboim,
O. Novel insights on human NK cells, immunological modalities revealed
by gene expression profiling. J. Immunol. 2004; 173:6547-6563.
Holmberg, C.I., Hietakangas, V., Mikhailov, A., Rantanen, J.O., Kallio, M.,
Meinander, A., Hellman, J., Morrice, N., Mackintosh, C., Morimoto, R.I.,
Eriksson, J.E., and Sistonen, L. Phosphorylation of serine 230 promotes
inducible transcriptional activity of heat shock factor1. The EMBO
Journal 2001; 20:3800-3810
Jaattela, M., Wissing, D., Bauer, P.A., and Li, G.C. Major heat shock
protein hsp70 protects tumor cells from tumor necrosis factor
cytotoxicity. The EMBO Journal 1992; 11:3507-3512.
José, G. A., José, A. L., and Nielsen, B. Muscle blood flow is reduced with
dehydration during prolonged exercise in humans. J. Physiol. 1998;
513:895-905.
Larson, E.B., Wang, L., Bowen, J.D., McCormick, W.C., Teri, L., Crane, P.,
Kukull, W. Exercise is associated with reduced risk for incident dementia
among persons 65 years of age and older. Ann. Intern. Med. 2006;144:73-81.
Leeuwenburgh, C., Hansen, P.A., Holloszy, J.O., and Heinecke, J.W.
Hydroxyl radical generation during exercise increase mitochondria
protein oxidation and levels of urinary dityrosine Free Rad. Biol. Med.
1999;27:186-192.
MacNutt, M.J., Guenette, J.A., Witt, J.D., Yuan, R., Mayo, J.R., and
McKenzie, D. C. Intense hypoxic cycle exercise does not alter lung density
in competitive male cyclists Eur J Appl Physiol 2007; 99:623–631.
Melling, C.W.J., Krause, M.P., and Noble, E.G. PKA-mediated ERK1/2
inactivation and hsp70 gene expression following exercise. The Journal of
Molecular and Cellular Cardiology 2006; 41:816- 822.
Mercier, P.A., Winegarden, N.A., and Westwood, J.T. Human heat shock
factor 1 is predominantly a nuclear protein before and after heat stress.
Journal of Cell Science 1999; 112:2765-2774.
Mestril, R., Chi S.H., Saten, M.R., and Dillmann, W.H. Isolation of a novel
inducible rat heat-shock protein (HSP70) gene and its expression during
ischaemia/hypoxia and heat shock. Biochem. J. 1994; 298:561-569.
Mosser, D.D., Theodorakis, N.G., and Morimoto, R.I. Coordinate changes
in heat shock element-binding activity and HSP70 gene transcription
rates in human cells. Mol. Cell. Biol. 1988; 8:4736-4744.
Mosser, D.D., Caron, A.W., Bourget, L., Denis-Larose, C., Massie, B. Role
of the human heat shock protein hsp70 in protection against
stress-induced apoptosis. Mol Cell Biol 1997; 17:5317-5327.
Neininger, A., and Gaestl, M. Evidence for a hsp25-specific mechanism
involved in transcriptional activation by heat shock. Experimental Cell
Research 1998; 242: 285-293.
Pirkkala, L., Alastalo, T.P., Zuo X., Benjamin, I.J., Sistonen, L. Disruption ofheat shock factor 1 reveals an essential role in the ubiquitin proteolytic
pathway. Mol Cell Biol. 2000; 20:2670-2675.
Rabindran, S.K., Haroun R.I., Clos, J., Wisniewski, Jan., and Wu, C.
Regulation of heat shock factor trimer formation: Role of a Conserved
Leucine zipper. Science 1993; 259:230-234.
Ryoichi, N., Exhaustive exercise induces differential changes in serum
granulysin and circulating number of natural killer cell. Tohoku J. Exp.
Med. 2006; 210:117-124.
Seo, H.R., Chung D.Y., Lee Y.J., Lee, D.H., Kim, J.I., Bae, S., Chung, H.Y.,
Lee, S.J., Jeoung, D., and Lee, Y. S. Heat shock protein 25 or inducible
heat shock protein 70 activates heat shock factor 1: Dephosphorylation
on serine 307 through inhibition of ERK1/2 phosphorylation. JBC 2006;
281:17220-17227.
Storms, W.W. Asthma associated with exercise. Immunol Allergy Clin North
Am. 2005; 25:31-43.
Sun, L., Chang, J., Kirchhoff, S.R., and Knowlton, A.A. Activation of HSF
and selective increase in heat-shock proteins by acute dexamethasone
treatment. Am J Physiol 2000; 278:H1091–H1097.
Tsuyoshi, O., Lyle, J.P., Esra, B., Larry, A.S., Koichiro, A., and Craig, M.L.
Role of prostanoid DP receptor variants in susceptibility to asthma. N
Engl J Med 2004; 351:1752-63.
Vander, A.J., Sherman, J.H., and Luciano, D.S. Human physiology: the
mechanisms of body function. 2004.
Williams, M.A., Haskell, W.L., Ades, P.A., Amsterdam, E.A., Bittner, V.,
Franklin, B.A., Gulanick, M., Laing, S.T., and Stewart, K.J. Resistance
exercise in individuals with and without cardiovascular disease
Circulation 2007; 116:572-584.
Xiumin, Z., Kaori, M., Arta, F., Yohei, H., Kazuyuki, O., Kinya, N., andZieker, D., Fehrenbach, E., Dietzsch, J., Fliegner, J., Waidmann, M., Nieselt,
K., Gebicke-Haerter, P., Spanagel, R., Simon,, P., Niess, A.M., and Northoff,
H. cDNA microarray analysis reveals novel candidate genes expressed in
human peripheral blood following exhaustive exercise. Physiol. Genomics
2005; 23:287–294.
Zou J., Guo Y., Guettouche, T., Smith, D.F., and Voellmy, R. Repression of
heat shock transcription factor HSF1 activation by HSP90(HSP90
complex) that forms a stress-sensitive complex with HSF1. Cell 1998
94:471-490.