| 研究生: |
郤劭群 Shi, Shau-Chung |
|---|---|
| 論文名稱: |
應用整體擴展技術結合類神經網路預測積層陶瓷電容器粉末先行之介電常數 |
| 指導教授: |
利德江
Li, De-jiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 類神經網路系統、積層陶瓷電容、整體擴展技術、虛擬樣本 |
| 相關次數: | 點閱:57 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在科技快速變遷的時代,產品的生命週期逐漸縮短,產品從研發試作至量產上市的時間愈縮愈短,如何由產品先行試作至快速量產,是企業的核心競爭力之一。
由於類神經網路系統(Neural Network)具有高效率的學習模式,特別是對於非線性模型之建立或時間數列預測模式的建構,都顯得非常的有效。因此,本研究將以積層陶瓷電容(Multi-layer Ceramic Capacitor, MLCC)為研究對象,應用類神經網路系統在產品量產初期,以供應商所提供的出貨報告資料和製程相關歷史資料,快速求出穩健的製程參數,以縮短產品試作至量產的時間,降低生產成本。
然而,對於類神經網路系統而言,其學習模式的建立,完全仰賴於訓練資料所提供的資訊,唯有充足的訓練資料,才能建立起一個精準的類神經網路系統,但實際上常因原始的資料筆數不足,使得模式的預測不穩定。
本研究乃針對在收集到的資料比數不多之情況下,應用整體擴展技術(Mega Trend Diffusion),產生虛擬樣本(Artificial Samples),增加資料筆數,以求得更加準確之預測模式,本研究顯示此模式可在產品量產初期,快速預估其製程重要參數,提供管理決策之參考。
none
參 考 文 獻
中文部分
葉怡成, (2001). 類神經網路模式應用與實作(七版). 儒林圖書有限公司.
英文部分
Bolloju, N. (1999). Decision model formulation of subjective classification problem-solving knowledge using a neuro-fuzzy classifier and its effectiveness. International Journal of Approximate Reasoning, 21, 197–213.
Fiore R. (2003). Capacitor Dielectric Properties, Technical Notes, American Technical Ceramics, Huntington Station, N.Y.(Downloadable from http://www.atceramics.com)
Hammer, M., and Champy J. (1993). Reengineering The Corporation-A Manifesto For Business Revolution. New York, NY : Harper Business.
Hennings, D.F.K. (2001). Dielectric materials for sintering in reducing atmospheres. Journal of the European Ceramic Society, 21, 1637–1642.
Huang, C.F., Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35, 137-161.
Huang, H.S. (2003). Learning from Sparse Data: An Approach to Parameter Learning in Bayesian Networks. PHD thesis, National Taiwan University, Taipei.
Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions Systems Man and Cybernetics, 23(3), 665-685.
Jang, J.S.R., Sun, C.T., and Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing : A Computational Approach to Learning and Machine Intelligence. Englewood cliffs, NJ: Prentice Hall.
Keller , J. M., and Hunt, D. (1985). Incorporating fuzzy membership functions into the perceptron. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7, 693-699.
Kwok, H.F., Linkens, D.A., Mahfouf, M., and Mills, G.H. (2003). Rule-base derivation for intensive care ventilator control using ANFIS. Artificial Intelligence in Medicine, 29, 185–201.
Lee, S. C., and Lee, E. T. (1974). Fuzzy sets and neural networks. J. Cyber, 4, 83-103.
Li, D.C., Chen, L.S., Lin, Y.S. (2003a). Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41, 4011-4024.
Li, D.C., Wu, C.S., Chang, F.M. (2003b). Using Data-fuzzification Technology in Small Data Set Learning to Improve FMS Scheduling Accuracy. International Journal of Advanced Manufacturing Technology, in press.
Li, D.C., Wu, C.S., Tsai, T.I., and Chang, F.M. (2004). Using Mega-Fuzzification and Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge. Computers & Operations Research, in press.
Li, D.C., Wu, C.S., and Tsai, T.I. (2005). Using Mega-Trend-Diffusion and Artificial Samples in Small Data Set Learning for Early Flexible Manufacturing System Scheduling Knowledge. Computers & Operations Research, in press.
Lin, C. T., and Lee, C. S. G. (1991). Neural-network-based fuzzy logic control and decision system. IEEE Transactions Computer, 40(12), 1320-1336.
Lin, C.T. and Lee, C.S.G. (1996). Neural Fuzzy System. New Jersey: Prentice Hall.
Lo, S.P. (2003). An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. Journal of Materials Processing Technology, 142, 665–675.
Negnevitsky, M. (2002). Artifical Intelligence: A guide to Intelligent Systems. England: Pearson Education.
Niyogi, P., Girosi, F., Tomaso, P. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceeding of the IEEE , 275-298.
Sarah, S.Y., Lam, K.Y.P., and Smith, A.E. (2000). Prediction and optimization of a ceramic casting process using a hierarchical hybrid system of neural networks and fuzzy logic. IEEE Transaction, 32, 83-91.
Shen, J.C. (2001). Fuzzy neural networks for tuning PID controller for plants with underdamped responses. IEEE Transaction on Fuzzy Systems, 9, 333-342.
Shi, Y., and Mizumoto, M. (2000). A new approach of neuro-fuzzy learning algorithm for tuning fuzzy rules. Fuzzy Sets and Systems, 112, 99–116.
Tagagi, H. (1990). Fusion technology of fuzzy theory and neural networks - survey and future directions. International Conference on Fuzzy Logic and Neural Networks, Japan, 13-26.
Takagi, T., and Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on System and Cybernetics, SMC-15(1), 116-132.
Wang, X.H., Chen, R.Z., Gui, Z.L., and Li, L.T. (2003). The grain size effect on dielectric properties of BaTiO3 based ceramics. Materials Science and Engineering, 99, 199–202.
Witten, I.H., and Frank, E. (2000). Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco: Morgan Kaufmann.
Yoon, D.H., and Lee, B.I. (2004a). Processing of barium titanate tapes with different binders for MLCC applications- Part I: Optimization using design of experiments. Journal of the European Ceramic Society, 24, 739–752.
Yoon, D.H., and Lee, B.I. (2004b). Processing of barium titanate tapes with different binders for MLCC applications- Part II: Comparison of the properties. Journal of the European Ceramic Society, 24, 753–761.
Zurada, J. M. (1992). Introduction to artificial neural systems. St. Paul : West.