簡易檢索 / 詳目顯示

研究生: 林建銘
Lin, Jain-Ming
論文名稱: 液相沉積法製備二氧化鋯薄膜之研究
Deposition of ZrO2 Film by Liquid Phase Deposition
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 66
中文關鍵詞: 二氧化鋯薄膜液相沉積法
外文關鍵詞: zirconium dioxide thin film, Liquid phase deposition
相關次數: 點閱:145下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用液相沉積法於矽晶片上沉積二氧化鋯薄膜。利用硫酸鋯於水溶液中水解機制與控制過硫酸銨濃度,在矽晶片上形成連續薄膜。研究中以感應耦合電漿原子放射光譜、掃描式電子顯微鏡、熱分析儀、傅立葉轉換紅外線光譜儀、X光薄膜繞射儀以及穿透式電子顯微鏡來分析薄膜之特性。電性方面,使用Picoampere meter(HP 4140B)量測 J-V 曲線,而 C-F 曲線則使用LCR meter(HP 4284)進行量測。

      成份分析顯示初鍍膜是由9ZrO2•2SO3•9H2O(s)所組成。傅立葉轉換紅外線光譜儀以及熱分析結果顯示,吸附於初鍍膜上之NH4+鍵結於500℃時會被移除,介穩之SO2-OH與SO3-H2O鍵結則是於750℃時會消失。初鍍膜經熱處理後,熱處理溫度在500~600℃時可得到介穩之正方相二氧化鋯薄膜,熱處理溫度為650~750℃可觀察到正方相與單斜相二相共存。穿透式電子顯微鏡結果也顯示600℃時介穩正方相二氧化鋯薄膜之結晶大小為11nm。

      薄膜沉積速率研究發現,薄膜厚度會隨沉積時間呈線性增加,10小時後薄膜厚度便無明顯改變。薄膜的成長速率則是會隨過硫酸根濃度的增加而降低,當過硫酸根濃度為0.02M時成長速率降至9.29 nmh-1。C-F與J-V曲線得到在450、600、750℃熱處理溫度下薄膜之介電常數為5.6、6.5、6.7,在±1伏特時所測得漏電流密度則會隨熱處理溫度上升而下降。

      In this study, ZrO2 thin films were deposited on single-crystal silicon substrates using liquid phase deposition. The continuous films were formed by hydrolysis of zirconium sulfate (Zr (SO4)2‧4H2O) in the presence of H2O, and by controlling adequate (NH4)2S2O8 concentration. The deposited films were characterized by ICP-AES, SEM, DTA, FT-IR, XRD and TEM. For electrical properties, HP 4140B is used to measure the I-V curves, and the C-F curves are obtained by HP 4284.

      The results of ICP-AES analysis reveal that as-deposited thin films were 9ZrO2•2SO3•9H2O(s). Form FT-IR and DTA results, the NH4+ band was remove at 500℃, and metastable band like SO2-OH group, and SO3-H2O group was eliminated at 750℃. After annealing, the metastable tetragonal phase ZrO2 thin film was observed at 500~600℃ for 2hrs, the coexistence tetragonal and monoclinic phase ZrO2 at 650~750℃ for 2hrs TEM result also shows the grain size of metastable t-ZrO2 film was 11nm at 600℃.

      Base on the results of film thickness versus deposition time, all curves started with an oblique line, the ZrO2 thin film thickness increased with increasing deposition time. After 10 hours, the thickness of ZrO2 thickness was stabilized. The ZrO2 film growth rate results show the growth rate of film decreased with increasing [S2O82-]. Specially, when [S2O82-] reached 0.02M, the growth rate of ZrO2 film was down to 9.29 nmh-1, and then becomes leveled. From the C–F and J–V analyses, dielectric constant of ZrO2 layer was calculated to be 5.6、6.5、6.7 after annealing at 450、600、750℃ and the current density was decreased with increasing heat treatment temperature at gate voltage of ±1 V.

    中文摘要 I 英文摘要 II 致謝 III 總目錄 III 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 理論基礎與文獻回顧 3 2-1 氧化鋯基本性質 3 2-2 氧化物薄膜的製作方法 7 2-2-1 氣相沉積法 7 2-2-2 溶膠-凝膠法 7 2-2-3 水溶液合成法 8 2-2-3-1 化學浴沉積法 9 2-2-3-2 連續離子層吸附反應法 10 2-2-3-3 無電鍍沉積法 11 2-2-3-4 液相沉積法 13 2-3 氧化鋯薄膜的應用 17 2-4 介電特性量測原理 18 第三章 實驗方法與步驟 19 3-1實驗材料 19 3-2 液相沉積法溶液製備 19 3-3 氧化鋯薄膜煆燒 19 3-4 氧化鋯薄膜分析 22 3-4-1 感應耦合電漿原子放射光譜分析 22 3-4-2 熱差/熱重分析 22 3-4-3 傅立葉轉換紅外線光譜儀 22 3-4-4 X-ray繞射分析 22 3-4-5 穿透式電子顯微鏡 23 3-4-6 掃描式電子顯微鏡 23 3-4-7 I-V及C-F量測 23 第四章 結果與討論 25 4-1氧化鋯薄膜之成份分析 25 4-1-1 定性分析 25 4-1-2 定量分析 28 4-2 氧化鋯薄膜之沉積機制 28 4-2-1 硫酸鋯濃度對薄膜表面型態的影響 28 4-2-2不同比例之過硫酸銨添加對薄膜表面型態的影響 30 4-2-3 沉積時間對薄膜表面型態的影響 33 4-2-4 熱處理對薄膜表面型態的影響 35 4-3 氧化鋯薄膜之成份分析、熱分解及相變化 39 4-3-1 反應析出物之熱分解 39 4-3-2 反應析出物之鍵結 41 4-3-3 氧化鋯薄膜相變化 43 4-3-4 析出物之TEM觀察 47 4-4 氧化鋯薄膜成長行為 49 4-4-1 過硫酸銨添加量與鍍膜時間對膜厚的影響 49 4-4-2 過硫酸根添加量對薄膜成長速率之影響 53 4-5 非晶質氧化鋯薄膜電性之量測 55 4-5-1 I-V量測 55 4-5-2 C-F量測 55 第五章 結論 60 參考文獻 62

    1. H. Heuer, “Transformation Toughening in ZrO2-Containing Ceramics”, J. Am. Ceram. Soc., 70[10], (1987) 689.
    2. Y. Miyahara, K. Tsukada, and H. Miyagi, “Field-effect transistor using a solid electrolyte as a new oxygen sensor” J. Appl. Phys., 63[7], (1988) 2431-2434.
    3. K. Izumi, M. Murakami, T. Deguchi, and A. Morita, “Zirconia Coating on Stainless Steel Sheets from Organozirconium Compounds’’ J. Am. Ceram. Soc., 72[8], (1989) 1465-1468.
    4. 陳立民,”奈米微晶二氧化鋯作為閘及氧化層之製備與特性研究’’,國立成功大學材料科學與工程研究所碩士論文。
    5. A. Khandkar, and S. Elangovan, “Development of Planar SOFC Technology: Progress and Problems,’’ Denki Kagaku, 58 [6], (1990) 551–55.
    6. T. B. Massalski, J. L. Murray, L. H. Bennet, and H. Baker, Binary Alloy Phase Diagrams, (American Society for metals, Ohio, 1987).
    7. Y. M. Chiang, D. Birnie III, and W. D. Kingery, Physical Ceramics : Principles for ceramic science and engineering, (Wiley, New York, 1997).
    8. W.S. Rees (Ed.), CVD of Nonmetals (Wiley-VCH, Weinheim, 1996).
    9. C.J. Brinker, and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, (Academic Press Inc, San Diego, 1990).
    10. T. P. Niesen, and M. R. de Guire, “Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions’’ Journal of Electroceramics, 6, (2001) 169–207
    11. J. Emerson-Reynolds, J. Chem. Soc., 45, (1884) 162
    12. P.C. Rieke, and S.B. Bentjen, “Deposition of cadmium sulfide films by decomposition of thiourea in basic solutions” Chem. Mater., 5, (1993) 43
    13. Y.F. Nicolau, “Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process” Appl. Surf. Sci., 22/23, (1985) 1061
    14. A. E. Jimenez-Gonzailez, and P. K. Nair, “Photosensitive ZnO thin films prepared by the chemical depositiox method SlLAR” Semicond. Sci. Technol., 10, (1995) 1277-1281
    15. Mindt, “Electroless Deposition of Certain Metal Oxides. I. Alpha-PbO2 ” J. Electrochem. Soc. 117, (1970) 615
    16. Mindt, “Electroless Deposition of Certain Metal Oxides. II. TlO2, MnO2” J. Electrochem. Soc. 118, (1971) 93
    17. H. NAGAYAMA, H. HONDA, and H. KAWAHARA, “A NEW PROCESS FOR SILICA COATING” J. Electrochem. Soc. 135, (1988) 2013
    18. S. Deki, Y. Aoi, Y. Asaoka, A. Kajinami, and M. Mizuhata, “Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance” J. Mater. Chem., 7(5), (1997) 733–736
    19. H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoib, and S. Dekic, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD)” J. Mater. Chem., 8(9), (1998) 2019–2024
    20. X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid phase deposition” Thin Solid Films, 371, (2000) 148-152
    21. M.K. LEE, and B.H. LEI, “Characterization of Titanium Oxide Films Prepared by Liquid Phase Deposition Using Hexafluorotitanic Acid” Jpn. J. Appl. Phys., 39, (2000) L101–L103
    22. K. Shimizu, H. Imai, H. Hirashima, and K. Tsukuma, “Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions” Thin Solid Films, 351, (1999) 220-224
    23. T. Yao, I. Inui, and A. Ariyoshi, “Novel Method for Zirconium Oxide Synthesis from Aqueous Solution” J. Am. Ceram. Soc., 79, (1996) 3329
    24. S. DEKI, Y. AOI, and A. KAJINAMI, “A novel wet process for the preparation of vanadium dioxide thin film” J. Mater. Sci., 32, (1997) 4269-4273
    25. S. DEKI, Y. AOI, Y. Miyake, A. Gotoh, and A. KAJINAMI, “Novel Wet Process for Preparation of Vanadium Oxide Thin Film” Mater. Res. Bull., 31, (1996) 1399
    26. S. Deki, Y. Aoi, J. Okibe, H. Yanagimoto, A. Kajinami, and M. Mizuhata, “Preparation and Characterization of Iron Oxyhydroxide and Iron Oxide Thin Films by Liquid-Phase Deposition” J. Mater. Chem., 7, (1997) 1769
    27. S. Deki, and Y. Aoi, “Synthesis of metal oxide thin films by liquid-phase deposition method” J. Mater. Res., 13, (1998) 883
    28. T. Yao, A. Ariyoshi, and T. Inui, “Synthesis of LaMeO3 (Me = Cr, Mn, Fe, Co) Perovskite Oxides from Aqueous Solutions” J. Am. Ceram. Soc., 80, (1997) 2441
    29. T. Yao, “Synthesis of functional ceramic materials from aqueous solutions” J. Mater. Res., 13, (1998) 1091
    30. K. Tsukuma, T. Akiyama, and H. Imai, “Liquid Phase Deposition Film of Tin Oxide” J. Non-cryst. Sol., 210, (1997) 48
    31. Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-Temperature Preparation of ZrO2 Precursor Thin Film in an Aqueous Peroxozirconium-Complex Solution” Chem. Mater., 16, (2004) 2615-2622
    32. “Gmelin Handbuch, zirconium”, Verlag Chemie, Gmbh, 1958
    33. A.L. Larsson, and G.A. Niklasson, “Optical properties of electrochromic all-solid-state devices” Solar Energy Materials & Solar Cells, 84, (2004) 351–360
    34. S. Orain, Y. Scudeller, and T. Brousse, “Thermal conductivity of ZrO2 thin films” Int. J. Therm. Sci., 39, (2000) 537-543
    35. J.H. Hong, W.J. Choi, and J.M. Myoung, “Properties of ZrO2 dielectric layers grown by metalorganic molecular beam epitaxy” Microelectron. Eng., 70, (2003) 35-40
    36. W. Martha, and B. Susan, “The Merck index tenth edition.”, Merk & Co., Inc. p. 1460
    37. M. Cassir, F. Goubin, C. Bernay, P. Vernoux, and D. Lincot, “Synthesis of ZrO2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties”, Applied Surface Science 193 (2002) 120–128
    38. R.C. Garvie, “The Occurrence of Metastable Tetragonal Zirconia as a Crystalline Size Effect” J. Phys. Chem., 69[4], (1965) 1238–43
    39. R. Srinivasan, C.R. Hubbard, O.B. Cavin, and B.H. Davis, ‘‘Factors Determining the Crystal Phases of Zirconia Powders: A New Outlook,’’ Chem. Mater., 5, (1993) 27–31
    40. K. Koski, J. Holsa, and P. Juliet, “Properties of zirconium oxide thin films deposited by pulse reactive magnetron sputtering”, Surf. Coat. Technol., 120-121, (1999) 303
    41. M.P. Klug, and L.E. Alexander, “X-ray diffraction procedure for polycrystalline and amorphous material”, (Wiley, New York, U. S. A., 1974), 634

    下載圖示
    2006-09-05公開
    QR CODE