| 研究生: |
洪子玄 Hung, Zi-Xuan |
|---|---|
| 論文名稱: |
合成雙金屬有機框架為超級電容器之正極材料 Synthesis of bimetallic organic frameworks as the positive-electrode materials for supercapacitors |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 超級電容器 、雙金屬有機框架 、比電容值 、膠態高分子電解質 |
| 外文關鍵詞: | supercapacitors, bimetallic MOFs, specific capacitance, gel polymer electrolyte |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對化石燃料可能耗盡的問題,人們於近年積極地開發再生能源,如水力、風力、太陽能發電。然而,再生能源的發電量受限於白天夜晚與季節性,便需要藉由大量儲能裝置以補足離峰發電期的用電需求。超級電容器兼具高能量與功率密度之特性,因此被視為十分有潛力的電化學儲能裝置。
本研究以自行合成之有機配體 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) 為前驅物與鎳離子 Ni(II) 及鈷離子 Co(II) 以溶劑加熱法鍵結形成雙金屬有機框架NiCoTAPT,並藉由 SEM、XRD、FT-IR 及 BET 分析鑑定其物化特性,分別以浸泡於水、KOH、NMP 之方式測試其化學穩定性。接續嘗試改變合成參數,將 TAPT 系列的金屬有機框架塗佈在碳紙基板,於三電極系統下進行電化學分析。分析結果顯示,以反應物莫爾比例 (Ni: Co: TAPT=1.5: 1.5: 1) 且 DMF/H2O 為反應溶劑下,NiCoTAPT具有極高之比電容值,可達 1,347 F/g,亦表現出高充放電速率之特性。
於單電極測試後,進一步嘗試組裝全固態非對稱式超級電容器,以活性碳材作為負極材料,並製備 PVA-KOH 膠態高分子電解質作為其電解質與隔離膜。非對稱式超級電容器 NiCoTAPT//AC 具有 1.5 V 的工作電位窗,且在低充放速率 (0.5 A/g) 時,比電容值可達到 57.8 F/g。此外,其最大能量密度為 18.0 Wh/kg、最大功率密度為1,607 W/kg,可實際使用於小型電子裝置,如 LED 燈泡或風扇馬達。綜合整體實驗成果,雙金屬有機框架 NiCoTAPT 可謂是相當具有前瞻性且具有潛力的電化學儲能材料。
Facing the crisis of exhaustion of fossil fuels, people have been actively developing renewable energy sources such as hydro-power, wind power and solar power in recent years. However, the power generation of renewable energy is highly dependent on the weather, day and night, and season. Thus, a large number of energy storage devices are needed to supply the electricity demand during off-peak power generation period. Supercapacitors have the advantages of high energy as well as power density, so they are regarded as promising energy storage devices.
In this work, 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) was proposed and synthesized as the organic ligand. TAPT would be further interacted with Ni(II)/Co(II) acetates for the formation of bimetallic MOFs, which is notated as NiCoTAPT. The characteristics of NiCoTAPT were analyzed and identified by SEM, XRD, FT-IR and BET. Besides, NiCoTAPT was immersed in water, KOH and NMP, respectively, to confirm its chemical stability. Subsequently, MOFs synthesized from TAPT-series were coated onto the carbon paper and carried out the electrochemical measurements by the three-electrode system. NiCoTAPT synthesized with the ratio of Ni: Co: TAPT=1.5: 1.5: 1 and DMF/H2O solvent performs the highest specific capacitance of 1,347 F/g at 2 A/g and maintains 85.7% capacitance at 20 A/g in 6 M KOH.
Furthermore, NiCoTAPT-based electrode was assembled into an asymmetric supercapacitor with AC (activated carbon)-based negative electrode and PVA-KOH gel polymer electrolyte. NiCoTAPT//AC shows a specific capacitance of 57.8 F/g at 0.5 A/g. Additionally, it exhibits maximum energy density of 18.0 Wh/kg and maximum power density of 1,607 W/kg, respectively. It was also applied to turn on LEDs and fan motor. Consequently, the results reveal that NiCoTAPT could be a promising electrode material for supercapacitors.
1. A Parikh. Solar power generation in India sees the lowest YoY increase in FY 2019-2020. Mercom Research Focus. May 06, 2020.
2. S Vitter. Experiment could shape Texas electricity rates. TexasMonthly. NOV. 02, 2017.
3. M Beykverdi, A Jalilvand, M Ehsan. Decentralized Control of low-voltage islanded DC microgrid using power management strategies. American Journal of Science, Engineering and Technology 1, 27–41, 2016.
4. JS Meng, X Liu, CJ Niu, Q Pang, JT Li, F Liu, Z Liua, LQ Mai. Advances in metal–organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev. 49, 3142–3186, 2020.
5. H Daglar, S Keskin. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord. Chem. Rev. 422, 213470, 2020.
6. L Jiao, JYR Seow, WS Skinner, ZU Wang, HL Jiang. Metal–organic frameworks: structures and functional applications. Materials Today 27, 43–68, 2019.
7. M Eddaoudi, DB Moler, HL Li, BL Chen, TM Reineke, MO' Keeffe, OM Yaghi. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metalorganic carboxylate frameworks. Acc. Chem. Res. 34, 319–330, 2001.
8. S Kitagawa, R Kitaura, S Noro. Functional porous coordination polymers. Angewandte Chemie International Edition 43, 2334–2375, 2004.
9. XT Xu, J Tang, HY Qian, SJ Hou, Y Bando, MSA Hossain, LK Pan, Y Yamauchi. Threedimensional networked metal−organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Applied Materials & Interfaces 9, 38737–38744, 2017.
10. Y Bian, N Xiong, G Zhu. Technology for the remediation of water pollution: A review on the fabrication of metal organic frameworks. Processes 6, 122, 2018.
11. J Klinowski, FAA Paz, P Silva, J Rocha. Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans 40, 321–330, 2011.
12. Z Ni, RI Masel. Rapid Production of metal−organic frameworks via microwave-assisted solvothermal synthesis. Journal of the American Chemical Society 128, 12394–12395, 2006.
13. N Stock, S Biswas. Synthesis of metal−organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews 112, 933–969, 2012.
14. YR Lee, J Kim, WS Ahn. Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering 30, 1667–1680, 2013.
15. S Wu, Z Xin, S Zhao, S Sun. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Research 12, 2736–2742, 2019.
16. F Zheng, D Zhu, X Shi, Q Chen. Metal–organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A. 3, 2815–2824, 2015.
17. CF Cheng, Xiang Li, KW Liu, F Zou, WY Tung, YF Huang, XH Xia, CL Wang, BD Vogt, Y Zhu. A high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathode. Energy Storage Materials 22, 265–274, 2019.
18. A Demessence, DM D’Alessandro, ML Foo, JR Long. Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine. Journal of the American Chemical Society 131, 8784–8786, 2009.
19. GH Wang, ZP Xu, ZG Chen, W Niu, Y Zhou, JT Guo, L Tan. Sequential binding of large molecules on hairy MOFs. Chem. Commun. 49, 6641–6643, 2013.
20. P Shao, L Yi, S Chen, T Zhou, J Zhang. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. Journal of Energy Chemistry 40, 156–170, 2020.
21. YR Wang, Q Huang, CT He, Y Chen, J Liu, FC Shen, YQ Lan. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nature Communications 9, 4466, 2018.
22. Y Takashima, VM Martínez, S Furukawa, M Kondo, S Shimomura, H Uehara,M Nakahama, K Sugimoto, S Kitagawa. Molecular decoding using luminescence from an entangled porous framework. Nature Communications 2, 168, 2011.
23. Y Shao, MFE Kady, J Sun, Y Li, Q Zhang, M Zhu, H Wang, B Dunn, RB Kaner. Design and mechanisms of asymmetric supercapacitors. Chemical Reviews 118, 9233–9280, 2018.
24. B Xu, H Zhang, H Mei, D Sun. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews 420, 213438, 2020.
25. P Sinha, S Banerjee, KK Kar. Transition metal oxide/activated carbon-based composites as electrode materials for supercapacitors. Springer Series in Materials Science 302, 145–178, 2020.
26. S Sundriyal, H Kaur, SK Bhardwaj, S Mishra, KH Kim, A Deep. Metal−organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord. Chem. Rev. 369, 15–38, 2018.
27. JK McDonough, AI Frolov, V Presser, J Niu, CH Miller, T Ubieto, MV Fedorov, Y Gogotsi. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 50, 3298–3309, 2012.
28. M Armand, F Endres, DR MacFarlane, H Ohno, B Scrosati. Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials 8, 621–629, 2009.
29. F Santos, JP Tafur, J Abad, AJ Fernández Romero. Structural modifications and ionic transport of PVA-KOH hydrogels applied in Zn/Air batteries. J. Electroanaly. Chem. 850, 113380, 2019.
30. S Sanati, R Abazari, J Albero, A Morsali, H García, Z Liang, R Zou. Metal–organic framework derived bimetallic materials for electrochemical energy storage. Angewandte Chemie-International Edition 60, 11048–11067, 2021.
31. S Chen, M Xue, Y Li, Y Pan, L Zhu, S Qiu. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors. Journal of Materials Chemistry A 3, 20145–20152, 2015.
32. Y Seo, PA Shinde, S Park, SC Jun. Self-assembled bimetallic cobalt–manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors. Electrochimica Acta 335, 135327, 2020.
33. C Chen, MK Wu, K Tao, JJ Zhou, YL Li, X Han, L Han. Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel–cobalt sulfides for supercapacitors. Dalton Transactions 47, 5639–5645, 2018.
34. S Kumaraguru, J Yesuraj, S Mohan. Reduced graphene oxide-wrapped micro-rod like Ni/Co organic-inorganic hybrid nanocomposite as an electrode material for high-performance supercapacitor. Composites Part B: Engineering 185, 107767, 2020.
35. J Yang, C Zheng, P Xiong, Y Li, M Wei. Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A 2, 19005–19010, 2014.
36. GC Li, PF Liu, R Liu, M Liu, K Tao, SR Zhu, MK Wu, FY Yi, L Han. Dalton transactions an international journal of inorganic chemistry MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalton Trans 45, 13311–13316, 2016.
37. M Lan, X Wang, R Zhao, M Dong, L Fang, L Wang. Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors. Journal of Alloys and Compounds 821, 153546, 2020.
38. F Saleki, A Mohammadi, SE Moosavifard, A Hafizi, MR Rahimpour. MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. Journal of Colloid and Interface Science 556, 83–91, 2019.
39. T Lei, F Pan. The synthesis of nanostructured nitrogen-doped carbon via one-step rapid carbonization of metal-organic frameworks: Towards enhanced supercapacitor performance. Journal of Energy Storage 25, 100898, 2019.
40. SH Lee, S Choi. Bimetallic zeolitic imidazolate frameworks for symmetric electrical doublelayer supercapacitors with aqueous electrolytes. Materials Letters 207, 129–132, 2017.
41. T Kim, W Choi, HC Shin, JY Choi, JM Kim, MS Park, WS Yoon. Applications of voltammetry in lithium ion battery research. J. Electrochem. Sci. Tech. 11, 14–25, 2020.
42. BK Kim, S Sy, A Yu, J Zhang. Electrochemical supercapacitors for energy storage and conversion. Handbook of Clean Energy Systems, 1–25, 2015.
43. VF Lvovich. Electrochemical impedance spectroscopy (EIS) applications to sensors and diagnostics. Encyclopedia of Applied Electrochemistry, 485–507, 2014.
44. C Song, Z Peng, X Lin, H Luo, M Song, L Jin, X Xiao, H Ji. Study on interaction between TATAbox binding protein (TBP), TATA-box and multiprotein bridging factor 1(MBF1) in Beauveria bassiana by graphene-based electrochemical biosensors. Frontiers in Chemistry 8, 278, 2020.
45. P Jiang, WY Wu, TH Tang, ZF Chen, YC Fang, R Wan. 1H NMR study of the host-guest chemistry in a supramolecular helicate FE II 2 L solution. Quim. Nova. 42, 412–417, 2019.
46. Z Wang, X Jiang, M Pan, Y Shi. Nano-scale pore structure and its multi-fractal characteristics of tight sandstone by N2 adsorption/desorption analyses: A case study of shihezi formation from the sulige gas filed, ordos basin, china. Minerals 10, 377, 2020.
47. D Jiang, Z Chu, J Peng, J Luo, Y Mao, P Yang, W Jin. One-step synthesis of three-dimensional Co(OH)2/rGO nano-flowers as enzyme-mimic sensors for glucose detection. Electrochimica Acta 270, 147–155, 2018.
48. MS Rahmanifar, H Hesari, A Noori, MY Masoomi, A Morsali, MF Mousavi. A dual Ni/Co-MOFreduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochimica Acta 275, 76–86, 2018.
49. Q Wang, L Shao, ZL Ma, JJ Xu, Y Li, CY Wang. Hierarchical porous PANI/MIL-101
nanocomposites based solid-state flexible supercapacitor. Electrochimica Acta 281, 582–593, 2018.
50. F Yu, T Wang, ZB Wen, HX Wang. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. Journal of Power Sources 364, 9–15, 2017.
51. V Shrivastav, S Sundriyal, A Kaur, UK Tiwari, S Mishra, A Deep. Conductive and porous ZIF67/PEDOT hybrid composite as superior electrode for all-solid-state symmetrical supercapacitors. Journal of Alloys and Compounds 843, 155992, 2020.
52. XH Cao, B Zheng, WH Shi, J Yang, ZX Fan, ZM Luo, XH Rui, B Chen, QY Yan, H Zhang. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701, 2015.
53. 郭茹雪。以三嗪衍生物合成金屬有機框架用於二氧化碳吸附與催化。國立成功大學化工系碩士學位論文,2019.
54. A Mahmood, RJ Zou, QF Wang, W Xia, H Tabassum, B Qiu, R Zhao. Nanostructured electrode materials derived from metal−organic framework xerogels for high-energy-density asymmetric supercapacitor. ACS Appl. Mater. Interfaces 8, 2148−2157, 2016.
55. P Wen, PW Gong, JF Sun, JQ Wang, SG Yang. Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. J. Mater. Chem. A 3, 13874–13883, 2015.
校內:2026-08-01公開