| 研究生: |
林信成 Lin, Sing-Cheng |
|---|---|
| 論文名稱: |
運動素於微管之步進分析 The stepping analysis of the Kinesin on the microtubule |
| 指導教授: |
黃明哲
Huang, Ming-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 運動素 、微管 |
| 外文關鍵詞: | Kinesin, microtubule |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運動素乃是生物體內一種水溶性酵素蛋白質分子,它像一台小火車似的,以生物體中的微管做為其前進軌道,做單方向性前進負責運送胞器、染色體等重要物質。它與核酸鍵結,進而引起其結構的變化,來產生運動機制。
本文以運動素為探討對象,首先建立數學量化的運動模型,並且以運動素處於外加負載下,探討兩種不同運動行為模式。並用速度、停滯時間、平均距離、隨機性等四種參數解釋其運動機制,並且與文獻實驗數據做比較,呈現相同的趨勢。
結果顯示,當運動素在固定濃度下時,其速度隨著負載的增加而縮小,並且在達到6pN時會停止前進。本文同時說明thermal rachet和power stroke的差異性,結果顯示兩者之整體速度有接近的趨勢,這可用來說明此兩種模型皆有其準確性。
In the paper, kinesin is a water enzyme protein molecular. It move on the microtubule as a small train in cell , speeds one-way to carry important material ,for example organelle and chromosome. Binding invoke the changing of structure bring the system of movement.
The kinesin be analyzed under the kinetic model of mathematic two kinds of differ moving behavior when kinesin is base load. In the condition, moving mechanicity is explained by four parameters : velocity、dwell time、the mean distance、randomness, and it compare with experiment data to show the same trend.
The result showed when the concentration of kinesin is constant , the velocity decreased with increase of base load, and 6pN stop to go forward. We explained the different of thermal rachet and power stroke. The result presented that the velocity of thermal rachet and power stroke show close to each other , therefore, it is to explain that two model have its correctness .
1. S. M. Block, L. S. Goldstein and B. J. Schnapp , “Bead movement by single kinesin molecular with optical tweezers”, Nature 48, pp. 348- 352, 1990
2. C. Peskin, G. Odell and G. Oster, “Cellular motions and thermal
fluctuations : the Brownian rachet”, Biophys. J. 65, pp. 316-324, 1993
3. C. Peskin and G. Oster, “Coordinated hydrolysis explains the mechanical behavior of kinesin”, Biophys. J. 68, pp. 202-211, 1995
4. C. M. Coppin, D. W. Pierce, L. Hsu and R. D. Vale, “ The load dependence
of kinesin mechanical cycle”, Proc. Natl Acad. Sci. U.S.A. 94, pp. 6775-6779, 1997
5. K. Visscher, M. J. Schnitzer and S. M. Block, “Single kinesin molecules studied with a molecular force clamp”, Nature 400, pp. 184-189, 1999
6. S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naberk, B. O. Carragher
, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker,E. Pate,
I. R. Cookek, E. W. Taylor, R. A. Milligan and R. D.Vale, “A structural
change in the kinesin motor protein that drives motility”, Nature 402, pp. 778-784, 1999
7. M. J. Schnitzer, K. Visscher, and S. M. Block, “Force production by
single kinesin motors”, Nature Cell Biol. 2, pp. 718-723, 2000
8. M. Nishiyama, H. Higuchi, and T. Yanagida, “Chemomechanical coupling
of the forward and backward steps of single kinesin molecules”, Nature Cell
Biol 4, pp. 790-797, 2002
9. S. M. Block, “Kinesin:What give ? ”, Cell 93, pp. 5-8, 1998
10. P. Xie, S. X. Dou, P. Y. Wang, “Mechanism of unidirectional movement of kinesin motors”, P. O. Box 603, pp. 1-22, 2003
11. A. B. Kolomeisky and M. E. Fisher, “Force-velocity relation for growing microtubules”, Biol. J. 80, pp. 149-154, 2001
12. M. J. Schnitzer and S. M. Block, “Kinesin hydrolyzes one ATP per 8-nm step”, Nature 388, pp. 386-390, 1998
13. R. B. Case, S. Pierce, and C. L. Har, “Role of the kinesin neck linker and catalytic core in microtubule based motility”, Curr. Bio. 140, pp. 1407-1416 , 2000
14. J. Howard, A. J. Hudspeth, and R. D. Vale “Movement of microtubles by
single kinesin molecules”, Nature 342, pp. 154-158, 1989
15. A. Mogilner, A. J. Fisher, and R. J. Baskin, “Structural changes in the neck linker of kinesin explain the load dependence of the motor’s mechanical cycle”, J. theor. Biol 211, pp. 143-157, 2001
16. S. A. Endow, and D. S. Barker, “Processive and nonprocessive models of kinesin movement”, Annu. Rev. Physiol. 65, pp. 161-175, 2003
17. 簡清富, “運動素於外加力負載下之運動分析”, 成大工科碩士論文, 2003.7
18. S. Uemura, K. Kawaguchi, J. Yajima, M. Edamatsu, Y. Toyoshima, and S. Ishiwata, “Kinesin- microtubule binding depends on both nucleotide state and loading direction”, PNAS 99, pp. 5977-5981, 2002
19. F. Kozielski, S. Sack, A. Thormahlen, E. Schonbrunn, V. Biou, A. Thompson, E-M. Mandelkow, and E. Mandelkow, “The crystal structure of dimeric kinesin and implications for microtubule dependent motility”, Cell 91, pp. 985-994, 1997
20. M. Kikkawa, E. P. Sablin, Y. Okada, H. Yajima, R. J. Fletterick, and N. Hirokawa, “Switch-based mechanism of kinesin motors”, Nature 411, pp. 439-445, 2001
21. I. Crevel, M. Nyitrai, M. C. Alonso, S. Weiss, M. A. Geeves and R. A. Cross, “What kinesin does at roadblocks : the coordination mechanism for molecular walking”, The EMBO. J. 23, pp. 23-32, 2004
22. D. Keller and C. Bustamante, “The mechanochemistry of molecular motors”, Biophysical J. 78, pp. 541-556, 2000
23. M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block, “ Force and velocity measured for single molecules of RNA polymerase”, Sci 282, pp. 902-907, 1998
24. C. Farrell, A. Mackey, L. Klumpp and S. Gilbert “The role of ATP hydrolysis for kinesin processivity”, J. Biol. Chem 277, pp. 17079-17087, 2002
25. K. Svoboda and S. M. Block, “Force and velocity measured for single molecules”, Cell 77, pp. 773-784, 1999
26. J. Howard,” Mechanics of motor proteins and the cytoskeleton”, Sinauer Associates, Sunderland, Massachusetts, 2001